Plan de Relance - Préservation de l'emploi R&D (2021-2024)



            


Référence Projet :  ANR - Plan de Relande R&D

Date de la signature de la convention : octobre 2021

Financeurs : ANR & Siemens Gamesa Renewable Energy (SGRE)

Porteur : INSA Rouen Normandie [Dossier : C. Gout (INSA) & P. Deglaire (SGRE)]

Responsables Scientifiques : P. BENARD (CORIA) et C. GOUT (LMI)

Budget du projet / Budget total : 897 900 € [20% INSA - 32% SGRE et 48% Plan de Relance ANR]


Partenaires du projet : CORIA (INSA Rouen, CNRS, UniRouen), LMI (INSA Rouen), Siemens Gamesa Renewable Energy

Participants chercheurs LMI : C. Gout et C. Le Guyader (participants majeurs) ainsi que N. Rouxelin, A. Tonnoir, H. Zidani.
Participant majeur SGRE (ingénieur-chercheur):   N. Warncke.

Recrutements dans le cadre de ce projet avec encadrement scientifique de Norbert Warncke pour SGRE, C. Le Guyader et/ou C. Gout pour le LMI :

  • Sur le plan de relance : Thibault Ternon (LMI, 2 ans ingénieur de recherche du 01/01/2022 au 31/12/2023, annonce Offre LMI >>> été 2021), S. Zouhri, J. Cortez et E. Muller pour le CORIA.
  • Au LMI : G. Khayretdinova (doctorante, C. Gout), travaux en 2022/23 sur l'approximation et visualisation des champs de vent (et courants marins), séjour de 6 mois en 2023 au LMI, et O. Riga (2022/23, projet GM5, visualisation des champs de vent) de septembre 2022 à février 2023 (avec C. Gout).

Transfert de technologie/Codes de calcul :

  • Un gros code de calcul créé et développé par Carole Le Guyader (LMI) a été communiqué et mis à disposition pour ce projet.
  • T. Ternon a intégré et développé un code de calcul dans le cadre de ce projet.

Collaborations nationales et internationales :

  • M. Chyba (University of Hawaii at Manoa, USA) : travaux sur l'approximation de données, notamment
    [H. Barucq, M. Chyba, C. Gout and C. Le Guyader, Oceanic surface current approximation from sparse data, accepted for publication, IEEE IGARSS ref#1525, 2020.] qui a contribué à générer ce projet.
  • H. Barucq, Equipe INRIA de Bordeaux Sud Ouest, Pau, France.

Séjour à l'étranger dans le cadre du projet

  • C. Gout (LMI) avec M. Chyba, UHM (2022).

Articles/Rapports/Communications

  • Un rapport co-rédigé par T. Ternon, C. Le Guyader, N. Warncke et C. Gout (lien overleaf), en cours (sur toute la durée du projet).
  • Rapport sur la modélisation d'un champ de vecteur et visualisation par Matplotlib (H. Barucq-M. Chyba-C. Gout-C. Le Guyader-G. Khayetdinova-O. Riga et H. Merelle)
  • Article en cours de rédaction (fin 2023...)
  • Participation T. Ternon (Torque 2022, 1er au 3 juin, Delft, Pays bas.)
  • Participation à une table ronde lors des rencontres Ondes et applications (SMAI, projet BOUM, Pau), 29-30 juin 2023.
  • Rencontres T. Ternon - SGRE (Pays bas) en mars 2022, mai 2022, Juin 2022, Paris SGRE en octobre 2022, et décembre 2022,  SGRE Pays bas en février-mars 2023, SGRE Paris 11 au 14 avril puis 24 au 26 avril 2023, puis 4 au 7 juillet, et La Hague (Pays bas) en octobre 2023.
  • 1 Communication murale G. Khayretdinova, SMAI 2023
  • Suivi conférence ("Energie, où allons nous?", B. Maillard, Paris, 7 novembre 2023, Ecole Militaire)
  • Organisation du workshop à Rouen : réunions préparatoires à Paris du 7 au 9 novembre, puis workshop le 16 novembre à Rouen : http://lmi.insa-rouen.fr/159.html
  • 2 posters (novembre 2023)
  • 1 communication orale T. Ternon, Workshop MNSN Labex AMIES/FR CNRS, nov. 2023.

Effet levier

  • Dépôt d'un projet dans le cadre de l'appel d'offre I-DEMO (BPI et Région Normandie). Octobre 2023
  • Possibilité à l'étude de contrat de travail de 4 ans (Ingénieur de Recherche) à partir de 2024.

 


Résumé scientifique du projet : (Mots clés : Modélisation mathématique et simulation numérique pour l’énergie éolienne. étude des charges aéro-élastique via des couplages forts, mécanique des fluides, étude des écoulements turbulents, étude des sillages, approximation des champs de vent et de l’environnement offshore, intelligence artificielle).


LMI : Afin de développer les outils avancés, il est nécessaire de connaitre la ressource amont c’est à dire les champs de vents incidents, ce qui ne peut être appréhendé avec suffisamment de précisions par les méthodes disponibles aujourd’hui. Le LMI se focalisera donc pour développer les méthodologies les plus précises pour les approximations de champs de vent à partir de données partielles de types variés (LIDARs, SCADA, Mesoscale data etc). Ceci permet de mieux connaitre les conditions rencontrées sur les sites et mettre au point une méthodologie de design adaptée à un milieu toujours mal connu et peu mesuré (l’offshore)
Ce projet fait suite à des collaborations récentes ces dernières années entre SGRE , le CORIA et le LMI : on peut citer le projet de la Région Normandie INWIT (2015-1018), le projet Région Normandie et fond FEDER (Europe) WAKE OP (projet du 1er juillet 2019 à fin 2022,) ou encore un contrat de recherche partenariale SGRE-CORIA en 2020 (VIVAL), un contrat de recherche partenariale SGRE-LMI en 2019, et de très nombreux stagiaires co-encadrés dont une grande partie (plus de 3 ont été ensuite recrutés par SGRE).
 
Thibault Ternon (LMI)  travaillera sur la modélisation et la simulation des champs de vent. L'un des principaux défis de la conception d'éoliennes réside dans la modélisation fine du champ de vitesses du vent et dans l'utilisation de ces modèles pour simuler la réponse mécanique d'une éolienne face à diverses conditions atmosphériques (turbulence, rafales). L'ajustement des paramètres de la turbine en fonction de ces conditions (pas de pale, vitesse de rotation, ajouts actifs) réduit les charges mécaniques, ce qui augmente la production d'électricité et permet des conceptions de turbines plus grandes à coûts réduits par MWh produit. Les approches existantes de ce problème sont fondées sur des méthodes d'interpolation (Simple Krigeage). Ces méthodes sont conçues à partir d'hypothèses (mesures ponctuelles, cohérence spatiale connue) qui ne sont pas satisfaites sur le terrain et introduisent donc des biais/erreurs limitant la qualité de la reconstruction. L'objectif de ce projet est d'utiliser des méthodes d'optimisation convexe (éventuellement non lisse) pour la reconstruction du champ de vitesses du vent au lieu de l'interpolation en minimisant une fonction coût (une fonction d'erreur) sur une partie du domaine où le champ de vent est reconstruit. Les données d'entrée de la fonction coût sont des données de mesure, une représentation du champ de vitesse (par exemple, spectralement ou dans une base éléments finis) avec des coefficients/paramètres inconnus, et potentiellement des mesures et des vitesses reconstruites à partir de pas de temps précédents (fondées sur un modèle de transport). Si elles sont construites correctement, les fonctions coût sont convexes et peuvent donc être traitées numériquement de manière efficace en utilisant des méthodes d'optimisation convexe (techniques de splitting). De plus, ces fonctions coût peuvent être adaptées pour contenir des contraintes supplémentaires (incompressibilité du champ d'écoulement, mesures volumétriques avec fonctions de pondération spatiale) nécessaires pour mieux approximer le champ d'écoulement et le processus de mesure. De plus, une optimisation numérique approfondie de cette méthode est requise, en utilisant autant que possible des expressions sous forme fermée et en utilisant des librairies de calcul optimisées.
Il pourra s'appuyer sur des travaux antérieurs de Carole Le Guyader, et de nombreux codes de calcul qu'elle a développé.
Une collaboration avec M. Chyba et H. Barucq sur ces thèmes sera pousruivie afin de développer les approches d'approximation des champs de vecteurs. Une doctorante (G. Khayretdinova) sera intégrée au projet (sur des aspects d'approximation, et de visualisation des champs de vecteurs). Des approches de type ML/DL seront également étudiée pour l'approximation et le traitement de données (A. Leclerc, phd) : ces approches utilisées en traitement d'images peuvent en effet potentiellement s'appliquer avec succès dans le cadre de le traitement et la visualisation des données de champs de vent.
 

CORIA : Simulation numérique pour l’énergie éolienne au niveau :
- des charges aéroélastiques sur les rotors et sur les pales
- des charges et performances sur les fermes éoliennes placées en ferme en mer
Ceci avec un objectif ambitieux afin de changer d’échelle sur les développements des méthodes avancées (LES, DES) dans un objectif de remplacement des méthodes classiques (semi empiriques) utilisées depuis plus de 20 ans en particulier pour :
- les scenarii de charges hautement instationnaires clefs pour les dimensionnements des turbines avec des pales de plus de 108 mètres d’envergure
- d’optimisation des effets de sillage et interaction avec les charges spécifiques sur les rotors. Cet objectif est clef pour améliorer le dimensionnement des fermes et leurs fondations et gagner en compétitivité de la filière.