GdT en Optimisation et Contrôle
Lieu: Salle de séminaire, Bâtiment Bougainville (RDC, salle BO-A-RC-02)
Fréquence: une ou deux fois par mois, mardi matin
Contact: Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
Pour 2023/2024, vous pouvez retenir les dates suivantes : 22 octobre, 3 décembre, 28 janvier, 11 février, 4&18 mars, 1&29 avril, 13 & 27 mai, 10&24 juin
Le Groupe de Travail se clôturera avec le "Workshop Franco-Chilien en Optimisation" du 07 au 11 juillet 2024.
Séminaires à venir
- Mardi 22 octobre 2024 - 11h30 (Salle des Conseils au D.U)
Claudia Sagastizábal (IMECC - Unicamp, Campinas SP, Brazil)
Title: "Industrial mathematics in action:full wave inversion"
Abstract: An industrial mathematician combines analytical and problem-solving skills, built upon a background of mathematical theory, computing, statistics. To illustrate these features, we present an industrial application involving advanced tools of mathematical optimization. We discuss how to apply the theory of optimal mass transportation to geosciences, for full-waveform inversion, a seismic imaging technique.
Séminaires passés
- Mardi 2 juillet 2024 - 11h30
Nicolas Maignan (INRIA, Project Team "Tangram")
Title: "Studies and challenges in legacy video colorization"
Abstract: Video colorization gives a new look to archival documents, making them more attractive among new generations. This work not only requires in-depth research to ensure historical accuracy, but is also time-consuming due to the processing of the thousands of images making up a video sequence. Current methods aimed at streamlining this process remain inefficient, with significant variations in hue over time, incomplete results for automatic methods, and artifacts appearing during frame-by-frame colorization. Despite reduced computation times, these shortcomings persist, forcing professionals to rework sequences manually, even after using algorithms guided by already colorized frames. Moreover, there is no database of old videos in color, so the ground truth is not available to train a classical big data model.The aim of this thesis is to develop colorization methods that are more stable over time, enabling experts to produce results with the desired hues and saturations and low data consuming. The first method we propose is based on a neural network using spatial and temporal convolution kernels to diffuse the colors from a few frames to the rest of the video. This first approach is fully unsupervised and does not require any database. The aim of this approach is to guarantee consistent colorization faithful to the user's style. In a second step, we studied the limitations of the well-known DeOldify method to check if this approach is accurate with a few amounts of data and with Technicolor movie, aiming to use similarly contrasted video. -
Workshop "On the Road to New Horizons: A Lighthearted Conference on Control Theory, Celebrating Witold Respondek's (Partial) Retirement!".
Cliquer ici pour plus d'information
- Mardi 23 avril 2024 - 11h30
Guillaume Lauga (INRIA & ENS Lyon)
Title: "Multilevel proximal methods for image restoration"
Abstract: Solving high-dimensional optimisation problems is a difficult task, and numerous methods have been proposed to compensate for the high cost in computation time. The approach explored in this work exploits the structure of these optimisation problems, in order to reduce the computational cost of their solution.
Specifically, we focus on the multi-resolution structure at the heart of multi-level optimisation methods. These approaches take advantage of the definition of coarse approximations of the objective function to make its minimisation more efficient. In this talk, we present a proximal multilevel algorithm IML FISTA - Inexact Multilevel FISTA - suitable for the solution of optimisation problems where the non-smooth component of the objective function has no explicit formulation for the proximal operator.
The proposed method is then adapted to solve imaging problem in radio-astronomy. To reconstruct such images, a high number of observations in the Fourier space are combined. Such high number creates a computational bottleneck. We demonstrate that IML FISTA can provide considerable acceleration by using coarse approximation constructed in the observation space. -
Mardi 9 avril 2024 - Journée Contrôle
- 11h00 - Islam Boussaada (L2S, CentraleSupélec, Univ. Paris Saclay)
Title: "Fonctions hypergéométriques confluentes et le placement partiel des pôles de systèmes de dimension infinie"
Abstract: Récemment, dans le cadre de l’étude de la stabilité exponentielle des systèmes gouvernés par des équations différentielles fonctionnelles, un nouveau lien entre les fonctions hypergéométriques confluentes et la distribution des zéros de la fonction caractéristique associée aux équations différentielles linéaires à retard a été mis en évidence. Cela a permis la caractérisation d’une propriété des systèmes à retard connue sous le nom de "la dominance induite par la multiplicité", ce qui a ouvert une nouvelle direction dans la conception de commande de faible complexité non seulement pour les systèmes à retard mais aussi pour certaines classes d’équations aux dérivées partielles en utilisant une idée de placement partiel des pôles. Dans cet exposé, après avoir rappelé quelques pré-requis, les fondements d’une méthodologie de placement de pôles seront présentés, puis des questions ouvertes seront abordées. Certaines applications telles que le contrôle actif des vibrations intervenant dans les structures flexibles et la modélisation de l’action du système nerveux central sur l’équilibre humain mettront l’accent sur les bénéfices de la stratégie de contrôle proposée. Enfin, des fonctionnalités d’un nouveau logiciel dédié appelé "P3δ" (https://cutt.ly/p3delta) seront présentées.
Cet exposé reprend essentiellement des résultats de travaux méthodologiques en commun avec Silviu Niculescu (L2S, Université Paris-Saclay), Guilherme Mazanti (L2S, Université Paris-Saclay) et Wim Michiels (NUMA, KU Leuven) et des résultats de travaux applicatifs en commun avec Sami Tliba (L2S, Université Paris-Saclay), Tamas Insperger (MTA-BME, Budapest University of Technology and Economics) et Tomas Vyhlidal (Czech Technical University in Prague). - 11h45 - Sami Tliba (L2S, CentraleSupélec, Univ. Paris Saclay)
Title: "Contrôle actif des vibrations dans des structures mécaniques minces instrumentées de transducteurs piézoélectriques"
Abstract: Dans cette présentation, nous commencerons d'abord par décrire la manière d'obtenir un modèle dynamique de dimension finie pour des systèmes intrinsèquement régis par des équations aux dérivées partielles, les structures mécaniques minces soumises à un environnement vibratoire sévère. Les vibrations affectent les équipements à forte valeur ajoutée qui sont embarqués dans les véhicules en mouvement. Le contrôle actif des vibrations s'avère nécessaire pour préserver l'intégrité et le fonctionnement de tels équipements. Les capteurs et actionneurs piézoélectriques se sont montrés remarquablement adaptés à la problématique et au contexte, mais nécessite l'emploi d'une modélisation par éléments-finis pour bien restituer les interactions électromécaniques en régime dynamique. L'emploi de correcteurs de type H-infini, robustes aux dynamiques négligées, a permis de répondre à la problématique, notamment de manière expérimentale. Dans une volonté de trouver d'autres structures de commande également efficaces, nous nous sommes penchés sur l'opportunité d'utiliser des lois de commande combinant des actions proportionneles et retardées afin d'évaluer leurs possibilités. Des travaux récents sur les systèmes à retard ont vu l'émergence d'une nouvelle structure de commande basées sur des actions retardées, incluant un terme auto-régressif portant sur la variable de commande, dans le but de réaliser un placement partiel des pôles en boucle fermée pour les systèmes linéaires invariants dans le temps et de dimension finie. Les correcteurs qui en résultent, appelés Correcteurs Quasi-Polynomiaux, notés QPB, correspondent à des lois de commande par rétroaction de la sortie mesurée avec des paramètres constants. Cette particularité présente un nombre trop faible de degrés de liberté, limitant les performances potentielles en boucle fermée. Pour surmonter ce problème, le correcteur original basé sur l'utilisation de quasipolynômes est amélioré en utilisant des "paramètres dynamiques", permettant d'augmenter le nombre de degrés de liberté disponibles pour la conception du correcteur. Il s’avère que l’utilisation de paramètres dynamiques dans le formalisme des fonctions de transfert correspond à des termes filtrés linéairement dans la loi de commande originale. Pour souligner les avantages apportés par un tel correcteur, le problème de l'amortissement actif des vibrations est abordé pour une structure mécanique flexible équipée d'une paire de capteur et d'actionneur piézoélectriques colocalisés.
- 11h00 - Islam Boussaada (L2S, CentraleSupélec, Univ. Paris Saclay)
- Mercredi 3 avril 2024 - Cours doctoral - 11h00 à 13h00
Kaïs Ammari (Laboratoire Analysis and Control of PDEs, University of Monastir)
Title: "A unified approach to solving some inverse problems for evolution equations by using observability inequalities"
Abstract : The goal of this course is to provide an unified approach to solve various types of evolution equations. The inverse problems we consider consist in determining unknown coefficients from boundary measurements by varying initial conditions. Based on observability inequalities, and a special choice of initial conditions we provide uniqueness and stability estimates for the recovery of volume and boundary lower order coefficients in wave and heat equations. - Mardi 2 avril 2024 - 11h30
Jalal Fadili (ENSICAEN, Normandie Université, CNRS, GREYC)
Title: "Convergence and Recovery Guarantees of Generative Neural Networks for Inverse Problems"
Abstract: Neural networks have become a prominent approach to solve inverse problems in recent years. While a plethora of data-driven methods was developed to solve inverse problems empirically, we are still lacking clear theoretical guarantees of these methods. On the other hand, many works have outlined the role of overparametrization to show convergence to optimal solutions of neural networks training. In this work we investigate how to bridge these two worlds and we provide deterministic convergence and recovery guarantees for a class of neural networks optimized to solve inverse problems. In the random setting, we also derive overparametrization bounds under which a two-layer Deep Inverse Prior network with smooth activation function will benefit from our guarantees. It is thus a first step towards the theoretical understanding of neural networks in the inverse problem setting.
- Mardi 19 mars 2024 - 11h30
Kaïs Ammari (Laboratoire Analysis and Control of PDEs, University of Monastir)
Title: "Well-posedness and stability of abstract thermoelastic delayed systems"
Abstract : In this talk, we consider a stabilization problem of a generalized thermoelastic system (the so-called $\alpha-\beta$ system) with delay in a part of the coupled system. For each case, we prove the well-posedness of the corresponding system using semigroup approach, then under some sufficient conditions we establish some results of exponential and polynomial stability of the system through a frequency-domain approach. The results are applied to concrete examples in thermoelasticity.
- Mardi 20 février 2024 - 11h30
Wei LU (LMI, INSA Rouen Normandie)
Title: "Online Estimation of the Inverse Hessian for Stochastic Optimization with Application to Universal Stochastic Newton Algorithms"
Abstract : This work addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach.
- Mardi 6 février 2024 - Journée Thématique "ANR -COSS"
- 11h00 - Fabio Camilli (Univ. Sapienza - Rome 1)
Title: "Continuous dependence estimates for viscous Hamilton-Jacobi equations on networks with applications"
Abstract: We present a continuous dependence estimate for viscous Hamilton-Jacobi equations defined on networks. Given two Hamilton-Jacobi equations, we prove an estimate on the C2-norm of the difference between the corresponding solutions in terms of the distance between the coefficients. Then, we provide two applications of the previous estimate: the first one is an existence and uniqueness result for a quasi-stationary Mean Field Games system defined on a network; the second one is an estimate of the rate of convergence for
homogenization of viscous Hamilton-Jacobi equations defined on a periodic lattice, when the size of the cells vanishes and the limit problem is defined in the whole Euclidean space. - 11h45 - Emmanuel Chasseigne (Univ. Tours)
Title: "Problèmes ergodiques pour des équations de Hamilton-Jacobi visqueuses avec dérive"
Abstract: On s'intéresse ici aux propriétés de constantes ergodiques apparaissant dans des équations de Hamilton-Jacobi. On utilise trois approches différentes : un problème d'évolution, un problème stationnaire et un problème d'optimisation stochastique. L'exposé se veut assez généraliste, présentant une compilation de plusieurs travaux réalisés en collaboration avec N. Ichihara (Tokyo) et ne rentre donc pas dans les détails techniques.
- 11h00 - Fabio Camilli (Univ. Sapienza - Rome 1)
- Mardi 23 janvier 2024 - 11h30
Philippe Moireau (INRIA & Ecole Polytechnique)
Title: "Optimal filtering for PDEs and with PDEs"
Abstract : Optimal filtering approaches in data assimilation are an old theory that is theoretically attractive but computationally prohibitive because of the curse of dimensionality in numerical implementation. In this talk, we propose to completely rethink this theory for two different problems. First, using parabolic PDEs, we show that additional regularity results imply that the Riccati operator belongs to the class of Hilbert-Schmidt operators and hence associated with kernels. This regularity allows us to perform the numerical analysis of the space-time discretization of the Kalman estimator and justifies the implementation of a numerically effective Kalman algorithm thanks to the use of H-matrices originally developed for the discretization of integral equations. The second problem concerns nonlinear finite dimensional problems, where this time the optimal filter can be computed from a solution of a Hamilton-Jacobi-Bellman (HJB) equation defined in the state space. After choosing a particular splitting time scheme for this HJB equation, we recognize inf-convolutions and proximal operators, which are now popular in optimal transport and optimization. Through the use of the softmax approximation, this allows us to limit the burden of the resulting algorithm and paves the way for the use of optimal filters for nonlinear PDEs when combined with model reduction strategies.
- Mardi 21 novembre 2023 - 11h30
Mounir Haddou (IRMAR - Insa Rennes)
"Interior point methods for solving Pareto eigenvalue complementarity problems"
Abstract: We propose to solve Pareto eigenvalue complementarity problems by using interior-point methods. Precisely, we focus the study on an adaptation of the Mehrotra Predictor Corrector Method (MPCM) and a Non-Parametric Interior Point Method (NPIPM). We compare these two methods with two alternative methods, namely the Lattice Projection Method(LPM) and the Soft Max Method (SM). On a set of data generated from the Matrix Market, the performance profiles highlight the efficiency of MPCM and NPIPM for solving eigenvalue complementarity problems. We also consider an application to a concrete and large size situation corresponding to a geomechanical fracture problem. Finally, we discuss the extension of MPCMand NPIPM methods to solve quadratic pencil eigenvalue problems under conic constraints. (This is a joint work with Samir Adly and Le Manh Hung from Univ. of Limoges.)
- Mardi 14 novembre 2023 - 11h30
Samia Ainouz (LITIS - Insa Rouen)
"Formalisme Mathématique de la polarisation : théorie et application"
Abstract : L’imagerie non conventionnelle de polarisation est un outil très performant pour percevoir des détails de la scène qui ne sont pas perceptibles avec une caméra classique. Longtemps réservée à l'astronomie et à la biologie, l’imagerie de polarisation commence à gagner du terrain dans le domaine de la robotique et du véhicule autonome. Récemment, elle a été utilisée pour une analyse fine de la scène routière afin de prendre le relai là où les systèmes de vision échouent. Néanmoins, l’analyse automatique d'une scène routière, requiert de la détection, de la classification, du calcul de similarité et donc de la distance. Or, de par sa construction, le formalisme de polarisation n’a aucune structure mathématique. Il est basé sur la réflexion et de ce fait deux points proches en terme de distance euclidienne ne le sont pas forcément en terme "optique", c'est à dire, n'appartiennent pas forcément au même matériau. La raison vient du fait que tout le formalisme de polarisation est basé sur la propagation des ondes lumineuses. Ces ondes électromagnétiques planes sont modélisées par des vecteur 4x1; les vecteurs de Stokes. La somme de deux vecteurs de Stokes ne reflète pas forcément la somme de deux ondes planes même quand elles sont de polarisations identiques. Dans cet exposé, je présenterai cette problématique dans sa globalité ainsi que quelques applications. Je présenterai également quelques pistes envisagées pour définir une structure mathématique autour du formalisme de la polarisation.
- Mardi 17 octobre 2023 - 11h30
Wim van Ackooij (EDF R&D, Scaly)
"Accounting for uncertainty through probability functions"
Abstract : Motivated by practice wherein one is keen on accounting for uncertainty in decision making, probability functions offer an intuitive framework. It turns out that the theoretical study of these objects offers many interesting perspectives. In this talk we will discuss some recent insights in the study of probability functions. Notably we will discuss issues as convexity and differentiability. We will also try to show how these insights can be put to work in practice.
- Mardi 4 juillet 2023 - 11h30
Fabien Pierre (INRIA, Equipe Tangram, LORIA)
"Couplage de méthode variationnelle avec des CNN pour la colorisation d'image"
Résumé : Nos travaux visent à combiner la prédiction puissante des réseaux de neurones convolutionnels (CNN) avec la précision au pixel près des méthodes variationnelles. Les limites des approches de colorisation d'images basées sur les CNN seront décrites. Nous nous concentrons ensuite sur un CNN capable de calculer une distribution statistique des couleurs pour chaque pixel de l'image à partir d'un processus d'apprentissage sur une grande base de données d'images couleur. Après avoir décrit sa limitation, une méthode variationnelle sera rappelée. Cette méthode sélectionne une couleur à partir d'un ensemble donné tout en régularisant le résultat. En combinant cette approche avec un CNN, nous avons conçu une approche de colorisation d'image entièrement automatique qui améliore la précision par rapport au CNN seul. Une extension incluant des deep image priors est également proposée pour conserver des structures fines de l'image. Quelques expériences numériques montrent la précision apportée par notre méthode.
- Mardi 27 juin 2023 - 11h30
Lionel Riou-Durand (University of Warwick, UK)
"Metropolis Adjusted Langevin Trajectories, a robust alternative to Hamiltonian Monte Carlo"
Résumé : Hamiltonian Monte Carlo (HMC) is a widely used sampler, known for its efficiency on high dimensional distributions. Yet HMC remains quite sensitive to the choice of integration time. Randomizing the length of Hamiltonian trajectories (RHMC) has been suggested to smooth the Auto-Correlation Functions (ACF), ensuring robustness of tuning. We present the Langevin diffusion as an alternative to control these ACFs by inducing randomness in Hamiltonian trajectories through a continuous refreshment of the velocities. We connect and compare the two processes in terms of quantitative mixing rates for the 2-Wasserstein and L2 distances. The Langevin diffusion is presented as a limit of RHMC achieving the fastest mixing rate for strongly log-concave targets. We introduce a robust alternative to HMC built upon these dynamics, named Metropolis Adjusted Langevin Trajectories (MALT). Studying the scaling limit of MALT, we obtain optimal tuning guidelines similar to HMC, and recover the same scaling with respect to the dimension without additional assumptions. We illustrate numerically the efficiency of MALT compared to HMC and RHMC.
- Mardi 11 avril 2023 - 11h30
Averil Prost (LMI, INSA)
"Quadratic is the new smooth - A notion of viscosity for control problems in the Wasserstein space over R^d"
Abstract. The generalization of viscosity theory to control problems over Wasserstein space is an active topic. This talk will focus on some advances in the direction of test functions. We introduce the Hamilton-Jacobi approach to control problems in a general context in order to highlight the intuition behind it, then decline it in the Wasserstein context. We discuss how to overcome two of the arising difficulties by adapting the notion of viscosity. This allows us to obtain some results of comparison and uniqueness of the solution of a suitable HJ equation.
- Jeudi et Vendredi 16&17 mars 2023
Journées ANR COSS (cliquer ici)
- Mardi 14 février 2023 - 11h30
Sourour Elloumi (ENSTA Paris, IPP)
"Mathematical programming formulations for discrete location problems"
Abstract. Given a set of facilities and a set of clients, discrete location problems aim to open a subset of facilities and assign each client to an open facility in such a way that a given cost is optimized. This class of problems has a wide range of applications and is much studied. We discuss different formulations of some of these problems by Mixed Integer Linear Programming (MILP) and point out characteristics of these formulations, namely the size and the quality of the linear programming relaxation bound. Our objective will be to illustrate how the choice of a formulation may have an important influence on the running time needed to compute an optimal solution.
- Jeudi 9 février 2023 - 11h30 - Salle LMRS
Juan Peypouquet (University of Groningen)
"Inertial algorithms for monotone inclusions and fixed point problems"
Abstract. We present an overview of the dynamical aspects of old and new first-order methods used in optimization and variational analysis, and how inertial features and relaxation can help improve their performance. Special attention will be paid to inertial and overrelaxed primal-dual methods, as an illustration. - Mardi, 24 janvier 2023 - 11h30
Imad El Bouchairi (LMI)
"Nonlocal continuum limits of p-Laplacian problems on graphs"
Abstract. The nonlocal p-Laplacian operator, the associated evolution equation and boundary value problem, governed by a given kernel, have applications in various areas of science and engineering. In particular, they have become modern tools for massive data processing (including signals, images, and geometry), and machine learning tasks such as semi-supervised learning. In practice, these models are executed in discrete form (in space and time, or in space for the boundary value problem) as a numerical approximation to a continuous problem, where the kernel is replaced by an adjacency matrix of a graph. In this work, we first focus on the study of numerical approximations of these models. Combining tools from graph theory, convex analysis, Γ-convergence, nonlinear semigroup theory, and evolution equations, we give a rigorous interpretation to the nonlocal continuous limit of the discrete nonlocal p-Laplacian evolution and boundary value problems on sparse graphs. Along the way, we provide consistency/error bounds. These results lead us to derive the rate of convergence of solutions for the discrete models on K-random sparse graphs to the solution of the corresponding nonlocal problems on the continuum, as the number of vertices grows to infinity, and we highlight the influence of p, the sparsity of the graphon, and the regularity of initial/boundary data on the convergence rate. - Mardi, 6 décembre 2022 - 11h30
Riccardo Bonalli (L2S & CNRS)
"On Learning- and Optimization-based Methods for Risk-Averse Control of Autonomous Systems"
Abstract: From energy networks to space systems: complex Autonomous Systems (AS) have become pervasive in our society. In this context, the design of increasingly sophisticated methods for the modeling and control of AS is of utmost relevance, given that they regularly operate in uncertain and dynamic circumstances. On the one hand, to mitigate hazardous and possibly catastrophic uncertain perturbations during the decision-making (or planning) process, one is led to reliably infuse Learning-based Models (LM) in the control pipeline. LM offer numerous advantages, including accurate representations of sophisticated systems which accomplish complex tasks. Nevertheless, due to the high degree of uncertainty in which AS operate, one must devise LM capable of offering guarantees of reliability. On the other hand, beneficially leveraging the aforementioned LM for safe-against-uncertainty deployment of AS may come only under specific optimal planning and control processes. In particular, the best trade-off is offered by risk-averse Stochastic Optimal Control Problems (SOCP), providing controls which optimize sophisticated stochastic worst-case-averse costs known as risk measures.
This talk aims at introducing two promising techniques which start bridging the aforementioned gaps. Specifically, the first part of the talk will show how general, i.e., non-linear stochastic differential equations may be estimated through appropriate sampling- and RKHS-based LM, offering high-order error bounds in law. The second part of the talk will address the design of conditions for optimality which can then be leveraged to solve general, i.e., non-smooth risk-averse SOCP through efficient numerical computations.
- Mardi, 22 novembre 2022 - 11h30
Idriss Mazari (Ceremade, Université Dauphine)
"Optimisation de formes & contrôle optimal: contrôle bilinéaire versus contrôle linéaire"
Résumé: Le contrôle optimal d’équations elliptiques ou paraboliques est un sujet classique et important de la théorie des équations aux dérivées partielles. Dans cet exposé, je présenterai quelques résultats sur une question qualitative qui apparaît dans de nombreuses applications, notamment en biologie: supposons que l’on se donne un opérateur, elliptique ou parabolique, noté $L$, une non-linéarité $f=f(t,x,u)$, abrégée en $f(u)$, et un couplage $\phi(y,u)$ entre le contrôle $y$ et l’état $u$. L’équation d’état est donnée parL u= f(u)+\phi(y,u).On se donne une fonctionnelle de coût de la formeJ(y)=\int j(u)où l’intégrale est en espace, ou en espace et en temps, et où $j$ peut également dépendre de $x$ et $t$. La classe de contrôles admissibles Y est définie par une contrainte $L^\infty$ et une contrainte $L^1$. Enfin, le problème de contrôle optimal est\[ \max_{y\in Y}J(y).\]Une question naturelle est alors de savoir si les contrôle d’optimaux $y^*$ sont bang-bang, c’est-à-dire s’ils valent 0 ou 1 presque sûrement, ou si, au contraire, ils peuvent comporter des zones “anormales”, où ils prennent des valeurs entre (0;1). D’un point de vue théorique aussi bien que numérique, cette question a son importance. Je parlerai de deux classes de résultats:
1) D’abord, pour les contrôles bilinéaires, c’est-à-dire avec $\phi(y,u)=yu$, je présenterai des travaux en collaboration avec G. Nadin et Y. Privat, qui indiquent que, si la fonctionnelle $J$ est croissante (y\leq y’ implique J(y)\leq J(y’)), alors la propriété bang-bang est satisfaite, indépendamment des propriétés de concavité ou convexité de la non-linéarité $f$. Ces résultats constituent un analogue “contrôle” du théorème de Buttazzo-DalMaso.
>2) Ensuite, pour les contrôles linéaires, c’est-à-dire avec $\phi(y,u)=y$, je présenterai des résultats obtenus avec G. Nadin et A. Toledo-Marrero qui montrent que la concavité de la non-linéarité $f$ devient critique. J’expliquerai comment des développements multi-échelles nous permettent alors d’obtenir des informations plus fines sur le comportement des optimiseurs sur la zone anormale.
- Mardi, 8 novembre 2022 - 11h30
Piero Visconti (LMI)
" Optimality conditions for parabolic stochastic optimal control problems with boundary controls"
Abstract. Optimality conditions are provided for a class of control problems driven by a Wiener process, which amounts to a stochastic maximum principle in differential form. The control is considered to act on the drift and the volatility, both of which may be unbounded operators, which allows us to consider SPDEs with control and/or noise on the boundary. By the factorization method, a regularizing property is established for the state equation which is then employed to prove, by duality, a similar result for the backward time costate equation. The costate equation is understood in the sense of transposition. Finally, the cost is shown to be Gateaux differentiable and its derivative is represented in terms of the costate, the optimality condition is deduced using the results of set-valued analysis.
- Mardi, 4 octobre 2022 - 11h30
Athena Picarelli (Università di Verona)
"A semi-Lagrangian scheme for a Hamilton-Jacobi-Bellman equation arising in stochastic exit time control problems" Abstract. We study the numerical approximation of parabolic, possibly degenerate, Hamilton-Jacobi-Bellman (HJB) equations in bounded domains. It is well known that convergence of the numerical approximation to the exact solution of the equation (considered here in the viscosity sense) is achieved under the assumptions of monotonicity, consistency, and stability of the scheme. While standard finite difference schemes are in general non-monotone, the so-called semi-Lagrangian (SL) schemes are monotone by construction. These schemes make use of a wide stencil and, when the equation is set in a bounded domain, this typically causes an overstepping of the boundary. We discuss here a suitable modification of this scheme adapted to the treatment of boundary problems.
- Mardi, 24 mai 2022 - 11h30 (Reporté)
Abderrahim El Moataz Billah (Université de Caen)
"Équations aux Derivées partielles sur Graphes et applications en Science des données"
Résumé. Les Équations aux Dérivées Partielles (EDP) non-linéaires sur des graphes connaissent actuellement un intérêt croissant du fait qu’elles apparaissent naturellement dans beaucoup d’applications en mathématique, en physique, en biologie, en économie ou en science des données ( réseaux internet ou routier, réseaux sociaux, traitement d’image, apprentissage automatique, erc...).Dans cette présentation , je donnerais une revue rapide de certaines équations de type p-laplacien, infini Laplacien , game p-laplacien ou de type Hamilton Jacobi sur graphes.Je présenterais différentes applications en traitement d'images et en apprentissage utilisant ces EDPs en se focalisant sur l'imagerie médicale et la valorisation du patrimoine culturel
- Mardi, 26 avril 2022 - 11h30
Guillaume Cantin (Laboratoire des Sciences du Numériques de Nantes)
"Synchronisation et contrôle dans des réseaux complexes de systèmes dynamiques "
Résumé. Dans cet exposé, nous étudions quelques propriétés de réseaux de systèmes dynamiques continus, d ́eterminés par des équations différentielles ordinaires ou par des équations de réaction-diffusion. Après avoir présenté la construction du ré seau et le problème d’évolution associé, nous montrons quelles conditions garantissent l’existence et l’unicité de solutions globales. Puis, nous nous intéressons au phénomène de synchronisation des dynamiques locales dans le réseau. La première partie de l’exposé est consacrée à la synchronisation dans des réseaux de systèmes de réaction- diffusion ; nous démontrons en particulier qu’un état de synchronisation peut être atteint asymptotiquement dans des attracteurs non triviaux. La deuxième partie est consacrée aux réseaux d’équations différentielles ordinaires, pour lesquels nous recherchons des conditions permettant d’atteindre l'état de synchronisation par contrôle optimal de la topologie du réseau. Plusieurs applications sont envisagées, avec notamment un modèle de panique et un modèle proie-prédateur en habitat fragmenté.
- Mardi, 1er mars 2022 - 11h30
Carole Le Guyader (LMI)
"Représentation multiéchelle d'une déformation"
Abstract: Motivated by Tadmor's work dedicated to multiscale image representation using hierarchical (BV,L^2) decompositions, we propose transposing their approach to the case of registration, a task which consists in determining a smooth deformation aligning the salient constituents visible in an image into their counterpart in another. The underlying goal is to obtain a hierarchical decomposition of the deformation in the form of a composition of intermediate deformations: the coarser one, computed from versions of the two images capturing the essential features, encodes the main structural/geometrical deformation while iterating the procedure and refining the versions of the two images yields more accurate deformations that map faithfully small-scale features. The proposed model falls within the framework of variational methods and hyperelasticity by viewing the shapes to be matched as Ogden materials. The material behaviour is described by means of a specifically tailored strain energy density function, complemented by L^∞ penalisations ensuring that the computed deformation is a bi-Lipschitz homeomorphism. Theoretical results emphasizing the mathematical soundness of the model are provided, among which the existence of minimizers, a Γ-convergence result, and analysis of a suitable numerical algorithm, along with numerical simulations demonstrating the ability of the model to produce accurate hierarchical representations of deformations.
- Mardi, 1er février 2022 - 11h30
Cristopher Hermosilla (Universidad Técnica Frederico Santa María, Chile),
"Optimal control of the Sweeping Process with a non-smooth moving set
Abstract: In this talk, we present a fully nonsmooth Pontryagin Maximum Principle for optimal control problems driven by a sweeping process with drift. The setting we study is an optimal control problem of the Mayer type in which the optimization procedure is carried out by choosing a control function from a class of admissible controls. The choice of the control modifies the drift and the related solution to the perturbed sweeping process. Here, for the first time, we are able to prove a Pontryagin Maximum Principle in the case in which the moving set is both nonsmooth and non-convex by using novel approximation techniques which is able to exploit the controllability properties of the dynamics.
- Mardi, 18 janvier 2022 - 11h30 (SALLE 210)
Timothée Schmoderer (LMI),
"Planification de trajectoires par la méthode de continuation régularisée"
Résumé : Pour un système de contrôle, il est possible de décrire l'ensemble des points accessibles à partir d'un état initial à l'aide de l'ensemble des commandes disponibles. En revanche, pour un état final accessible donné, il est en général hors de portée de donner une commande qui réalise le transfert de l'état initial vers cette état final ; c'est le problème de planification de trajectoires. Dans cet exposé, nous présenterons la méthode de continuation introduite (dans ce cadre) par Sussmann et développée par Chitour. Cette méthode introduit une suite de problème qui sous certaines conditions converge vers une commande réalisant la trajectoire souhaitée. Ces conditions impliquent que la méthode évite la variété singulière de l'application entrée-sortie associée au système. La description de ces singularités est un problème encore ouvert aujourd'hui, nous proposerons alors une régularisation de la méthode de continuation. Nous donnerons une condition nécessaire à la convergence de la solution régularisée vers une solution du problème original. Nous illustrerons le potentiel de cette méthode à travers quelques exemples numériques.
- Mardi, 7 décembre 2021 - 11h30
Othmane Jerhaoui (UMA, ENSTA Paris),
"Deterministic optimal control on Riemannian manifolds under probability knowledge of the initial condition"
Abstract: In this talk, we study an optimal control problem on a compact Riemannian manifold with imperfect information on the initial state of the system. The lack of information is modeled by a Borel probability measure along which the initial state is distributed. The main result is that the value function of the problem is the unique viscosity solution to an HJB equation defined on The Wasserstein space. The notion of viscosity is defined by exploiting the Riemannian-like structure on Wasserstein spaces
- Mardi, 23 novembre 2021 - 11h30
Conrad Gstoettner (Université de Linz, Austria),
"Structurally Flat Triangular Forms on Basis of the Extended Chained Form and Systems Linearizable by a Two-Fold Prolongation
Abstract: The extended chained form is a well-known structurally flat triangular form. Easily verifiable geometric conditions which characterize the extended chained form have been derived. Augmenting the extended chained form by integrator chains turned out to yield structurally flat triangular forms which cover a broad variety of practical and academic flat two-input systems. In one of these triangular forms, equally lengthened integrator chains are attached to the inputs of a system in extended chained form. Furthermore, the case of integrator chains which differ in length by one integrator has been characterized. In this talk, the relation of these two triangular forms to the class of two-input systems which are linearizable by a two-fold prolongation of a suitably chosen input is discussed.
- Mardi, 09 novembre 2021 - 11h30
Arnaud Knippel (LMI), "Laplacien de graphe et applications"
Résumé : Pour un graphe simple non orienté, on définit le Laplacien comme la différence entre la matrice diagonale des degrés des sommets et la matrice d’adjacence. Cet opérateur matriciel est une version discrète de l’opérateur Laplacian de l’équation d’onde (ou équation de la chaleur), et intervient dans de nombreux domaines où l’on étudie de façon dynamique des flots de quantités soumises à une loi de conservation.L’exposé comporte une première partie abordant les propriétés des Laplaciens de graphe et de leurs spectres. Nous présentons des résultats sur des transformations de graphes permettant des calculs exacts de valeurs propres et vecteurs propres. Nous caractérisons grâce à ces outils les graphes qui admettent des vecteurs propres composés uniquement des valeurs 0, 1 et -1. Ces graphes ont des propriétés de stabilité pour des systèmes dynamiques étudiés en physique théorique. Nous abordons aussi l’étude de graphes composés de chaînes et de cliques, qui correspondent à des modèles simples de protéines. Le Laplacien de graphe intervient aussi pour des applications dans le domaine électrique : nous proposons un modèle simplifié de loadflow pour les réseaux de transmission, et proposons une approche d’optimisation basée sur les vecteurs propres du Laplacien de graphe.
- Mardi, 26 octobre 2021 - 11h30
Witold Respondek (LMI), "Les entrés plates : la théorie et des applications"
Résumé : Un système avec m commandes est dit plat si nous pouvons exprimer tous ses états et commandes en utilisant m fonctions bien choisies (de l'état, de la commande et de ses dérivées par rapport au temps) qui sont appelées sorties plates. Dans notre exposé, nous présenterons une théorie du concept dual, à savoir celui des entrées plates. Étant donné un système dynamique observé (sans contrôles), le problème des entrées plates est d'ajouter des contrôles au système de telle sorte que le nouveau système devienne plat, les observations d'origine étant ses sorties plates, c'est-à-dire le problème de placer des actuateurs. On rappellera la notion de platitude, définirons les entrées plates, puis discuterons une solution dans le cas observable (cas déjà résolu), et enfin proposerons une solution dans le cas inobservable. Nous illustrerons nos résultats en les appliquant au problème de la communication sécurisée.