• Thèmes de recherche/Research topics: Equatiοns de Ηamiltοn-Jacοbi sur des graphes.
      • Formation : M2 (Liban)
      • Financement : Allocation INSA
      • Dir de thèse : N. Forcadel et I. Hassan (Liban)
      • Dates : 2021/ juin 2025

 




                                         

 Soutenance de thèse de Rita Zantout le vendredi 20 juin 2025 à 14h, en amphi Curie, INSA Rouen. Cette thèse a été réalisée au sein du Laboratoire de mathématiques de l'INSA de Rouen (LMI), sous la direction de Nicolas Forcadel, et s’intitule Équations aux dérivées partielles sur les graphes. Le jury sera composé de : 
- Mme Elisabetta CARLINI, Sapienza Università di Roma , rapporteure
- M. Julian TOLEDO, University of Valencia, rapporteur
- M. Matthew THORPE, University of Warwick, examinateur
- Mme Coloma BALLESTER, Universitat Pompeu Fabra in Barcelona, examinatrice
- M. Noureddine IGBIDA, Université de Limoges, examinateur
- M. Abderrahim EL MOATAZ, Université de Caen, examinateur
- M. Jalal FADILI, Université de Caen, co-encadrant
- M. Nicolas FORCADEL, INSA Rouen, directeur de thèse

 

Articles

  1. Limits of non-local approximations to the Eikonal equation on manifolds

    Authors: Jalal M. Fadili, Nicolas Forcadel, Rita Zantout

    Abstract: In this paper, we consider a non-local approximation of the time-dependent Eikonal equation defined on a Riemannian manifold. We show that the local and the non-local problems are well-posed in the sense of viscosity solutions and we prove regularity properties of these solutions in time and space. If the kernel is properly scaled, we then derive error bounds between the solution to the non-local….

  2. Limits and consistency of non-local and graph approximations to the Eikonal equation

    Authors: Jalal Fadili, Nicolas Forcadel, Thi Tuyen Nguyen, Rita Zantout

    Abstract: In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions i… MSC Class: 70H20; 49L25; 65N15; 58J32; 60D05; 05C90