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1. The deconvolution problem



Deconvolution a4/ 2

Measuring devices have a non sharp impulse response: our
observations are blurred of a "true ideal scene".

v

Geophysics,

v

Astronomy,

v

Microscopy,

» Spectroscopy,

Image courtesy of S. Ladjal

Goal: Obtain as much detail as we can from given measurements.
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» Consider a signal mgy defined on T = R/Z (i.e. [0,1) with
periodic boundary condition).
» Perturbation model:

= Yotw
—0.5 0.5
Orlgmal Slgnal Low-pass filter Noise Observation

» Goal: recover mg from the observation yo + w = @ * mg + w
(or simply yp = ¢ * mg)
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» Consider a signal mgy defined on T = R/Z (i.e. [0,1) with
periodic boundary condition).
» Perturbation model:

= Yotw
—0.5 0.5
Orlgmal Slgnal Low-pass filter Noise Observation

» Goal: recover mg from the observation yo + w = @ * mg + w
(or simply yp = ¢ * mg)
> |ll-posed problem:
» the low pass filter might not be invertible (&, = 0 for some
frequency n)
» even though, the problem is ill-conditioned (|@,| < |@o| for
high frequencies n)
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» Assumption: the signal mq is sparse

mo * 2 + w =
o™ l “ 1t o5 V[ Vs to 1t
Original Signal Low-pass filter Noise Observation
N aj € R,
mg = Z ajdyx., where x; €T,
i=1 N € N is small.

so that we observe y + w = Z,Nzl aip(- — xi) +w.

» |dea: Look for a sparse signal m such that ¢ * m ~ yp + w (or
¥o0)-
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Can we guarantee that the reconstructed signal is close to the
original one?
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2. Discrete regularization



Discretization 027

Define a finite grid G = {ﬁ 0<i<M-—1} CT, and consider
signals of the form m = S 1 a,-éﬁ-.

> Write ‘7317

vt ,. EE RN
p*xm= ; aio(- = 47 Candidate Signal
ao
[ o |et- ol — ML) ”
am—1
® —_—

» Equivalent paradigm: Look for a sparse vector a € RM such
that ®a ~ yg (or ®a~ yp + w).



Discrete ¢! regularization 10/ 27
Define

M— . M—
_ S el i m = b e s st
Imlle(g) +00 otherwise.

» Basis Pursuit [Chen & Donoho (94)]

mei/rcj(m [ml[(gy such that dm = yo

» LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al.
(99)]

. 1
nf Mmllag) +510m— 0o+ w3 (PH(o+ w)



Discrete ¢ regularization 10/ 27
Define

_ . M—
_ [ el m =T A st e
Imlle(g) +00 otherwise.

» Basis Pursuit [Chen & Donoho (94)]

mei/r\]j(T) [[mll¢1(g) such that ®m = yo

» LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al.
(99)]

. 1
L Mmlag) + 519m = o+ w)lE (PY(0 +w)

(?-robustness (Grasmair et al. (2011))

If mo =}, a0,i0;/m is the unique solution to PY(yo), and my =" ax
is a solution to PM(yo + w), then [lay — agl2 = O(||w||2) for A = C||w/2.
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M-1
mo =370 a0,idi/m

No support recovery Support recovery

Can one guarantee that Supp my = Supp mg?
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M-1
mo =370 a0,idi/m

No support recovery Support recovery

Can one guarantee that Supp my = Supp mg?

» Sufficient conditions for Supp my C Supp mg:
» Exact Recovery Principle (ERC) [Tropp (06)]
» Weak Exact Recovery Principle (W-ERC) [Dossal & Mallat
05
> Almo(st )r]1ecessary and sufficient Supp my = Supp mg
» Fuchs criterion [Fuchs (04)]
See also [Vaiter et al. (14)] for more general regularizers, [Liang et
al. (15)] for implications on the convergence rates of
optimization methods.
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—_ M . : M-1
For mo = 3_/7; a0,i0x, ;, define Il mo =M% bo kbi/m

4 |
4 |

Theorem (Fuchs (04))

Assume that ®,, =4 (¢o(- — x0,1), - - - (- — xo,n)) has full rank.

If InF(45)| < 1 for all k such that 4 & {xo,1,...,%o.n}, then mo is the unique
solution to P§'(yo), and there exists v > 0, Ao > 0 such that for 0 < A < Ao
and [wll2 <A,

> The solution my to PY(yo + w) is unique.

> Supp my = Supp mo, that is my = E,N:l aﬁ\”’,-éxo,,, and
sign(ax,;) = sign(ao,i),

> aY = a0 + O w — A\(r Py, ) ' sign(ao,r).

If |np(§)| > 1 for some k, the support is not stable.
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_\\M . :
For mo =3 .7, 0,i0x, ;, define o

1 X% KR KKK
nF = ®*pr, where /[ “
0 A\,

pr = argmin{|[pll.2(r); (" p)(x0.1) = sign(a0.)} \l/
1R KRR KX XKoo K

+,%
= s,

Theorem (Fuchs (04))

Assume that ®,, =4 (¢o(- — x0,1); - - - (- — xo,n)) has full rank.

If InF(45)| < 1 for all k such that 4 & {xo,1,...,%o.n}, then mo is the unique
solution to P§'(yo), and there exists v > 0, Ao > 0 such that for 0 < A < Ao
and ||w|2 < YA,

> The solution my to PY(yo + w) is unique.

> Supp my = Supp mo, that is my = E,N:l aﬁ\”’,-éxo,,, and
sign(ax,;) = sign(ao,i),

> aY = a0 + O w — A\(Pf, Py, ) ' sign(ao,r).

If |np(§)| > 1 for some k, the support is not stable.
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-

ANREA

When the grid is too thin, the Fuchs criterion cannot hold
= the support is not stable.

What is the support at low noise when the Fuchs criterion does not
hold?

The solution at low noise is supported on its extended support
[Dossal (07)].
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» The solution to the Lasso PY(yo + w) is piecewise affine in
(ao, w, )\) [Osborne et al. (00)].

» Except for a Lebesgue negligible set of ag, the last path in
(w, A) is of the form:

aV = ag + Ww + \B.

for some linear operator W : L?(T) — RM and some 8 € RM.

» The extended support is determined by Im W + Span 3.

Identify the extended support for the deconvolution problem. I
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> Consider a sequence of refining grids with vanishing stepsize:

i . . Gn C Gn1 (e.g. M, = —1,,)
— . <i < 2n )y
gn_{Mn,o\:\Mn 1}(']1‘ Wlth{li i M, 7

> Assume that Supp m C G, for n large enough, i.e.

Mp—1

N
m:E 00,i0xg ; = E a0,k0 k .
: s
i=1 k=0

Theorem (D.-Peyré (13,15))

If mo is “non-degenerate”, for n large enough, the extended support of mg on
Gn is given by

IU{i+¢ci;iel} where I={i€[0, M,—1]; a0;#0} ande e {x1}'.
Moreover, € does not depend on n, and is given by

e = (diag(sign(aw))) sign (), TP}, ) " " & sign(ao)) .

where T is the orthogonal projector onto (Im ®,)*




Low noise “robustness’ on thin grids 16 / 27

Under the same hypotheses: » mo = X1 20,465

A. purT

Theorem (D.-Peyré (15))

There exists v\ > 0, )\(") > 0 such that for 0 < A < )\g") and ||wl2 < "),
> The solution m)\) to Py"(yo + w) is unique.
> Supp m(n) U1</<N {Xo iy X0,i + M } that is

mA:EN ( )6X°l+b)\'5X° +;;),aﬁd
sign(ax,;) = sign(bx,i) = sign(ao,i),

(n) .
axy | _ (2o * -1 5|gn(ao,/)
. (b(n)> - ( 0 > + d)Xo soteW = AP xoe Pro,xote) (Sign(ao,l)>'

In fact 4(" = O(1) and \; ) — O(M )-




Numerical experiments

—
o
Input Signal
1
at xo

at x1

Amplitude

17 / 27



Variant: the “Continuous”’ Basis Pursuit 18/ 27

A semi-discrete approach :

try to “interpolate” the positions.
i t
—
=

> ldea: if x is not on the grid:
i

ap(- = x) = ag(- = 1) +agl( = ) (—x+ 20)

=ap(- — ﬁ) + ari' (- — LI\/I) where 7, = —x+ ﬁ

» Set b; = 2a7;M, so that |b;| < ais a> 0.

» Solve the Continuous Basis Pursuit [Ekhanadam (11)]

- 1 1 / 2
inf Malla + 3192+ 500b — (10 + )3

(a,b)eRT x
lbl<a



StUdy on thln grids 19 / 27

» The Continuous Basis Pursuit is equivalent to a Lasso with
positivity constraint.

» Extended support: again pairs of spikes.

» Stability constants: )\(()") = O(Mig)

— +—t+—+
X1 X2

Input Signal

I
(6)]
'
\

Amplitude

0 5x 1073
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3. The continuous limit
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Define the total variation of the measure mo = 215 20,0,
m e M(T) as:

() = sup { [ vamiv € (1), 1ol < 1)

Example :  » If m= Z,{V:O a;0x;, then |m|(T) = Z,,-V:O lai].
> If m=fdL, then |m|(T) = [ |f(t)|dt.

Such a regularization has been considered in [de Castro & Gamboa (12),
Candes & Fernandez-Granda (13), Bredies & Pikkarainen (13), Recht et al. (12)].



Continuous framework for deconvolution 22/ 27

Using the total variation of measures:

|m|(T) = SUP{fT Ydm;y € C( ”77[}”00 X }

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes &
Fernandez-Granda (13)],

inf T h that dm = >
Lk mI(T) such that &m = yy (P& (%))

» LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais
et al. (13)]

, 1
'nf( Alm|(T) + S[®m = (yo + w)|3 (PR (vo + w))

meM(T)

Numerical methods for solving Py(yo) and Px(yo + w) are proposed in
[Bredies & Pikkarainen (13), Candes & Fernandez-Granda (13)]



|dentifiability for discrete measures 23/ 27

Minimum separation distance of a measure m:

N
. m=>";ailx
A(m) = min Ix — X/| Zim
x,x" €Supp m,x#x' T
. . _ sin(2fc+1)wt) ol & R
Ideal Low Pass filter: o(t) = =27 *—iA(m)

i.e n =1 for |n| < £, 0 otherwise.

Theorem (Candés & Fernandez-Granda (2013))

Let ¢ be the ideal low-pass filter. There exists a constant C > 0
such that, for any (discrete) measure mg with A(mg) > % mg is
the unique solution of

inf T h that dm = P
mel/rc/t(T)|m|( ) such that ®m = yy (Po(y0))

where yo = dmyg.

Remark: 1 < C € 1.87.



Limit of the functionals 24/ 27

We say that m, € M(T) weakly * converges towards m € M(T) if

vVf e C(T), lim /fdm,,—/fdm
n——+00

Consider a sequence (m;)neny € M(T)YN such that each m,, is a
minimizer of Péw"(yo) (resp. P\ (yo + w)).

Theorem ([Tang et al. 13])

The sequence (my,)nen has convergent subsequences for the weak *
convergence, and each limit point is a minimizer of P§°(yo)

(resp. P(y0 + w)).

Remark: In fact Py""(yo) (resp. P{°(yo + w) M-converges towards
P57 (yo) (resp. P (o0 + w)).



Fine properties of the support

More precisely, if the solution m* = 3"V ;6
to P°(yo + w) (resp. P5°(y0)) is
“non-degenerate”,

> then the solution m, to P5°(yo + w) (resp. Po(yo)) is made of pairs
consecutive spikes:

N
mn =Y (ai6k/m + bib(igc;)/m)

i=1
with sign(a;) = sign(bi) = sign(«;),e; € {£1}

> At low noise, if the original measure is on the grid, pairs of consecutive
spikes (including the original one) (see Section 1) .

Outline of the argument

> Approximate the solution of the dual to PY with the solution of the dual
to P57,

> Control the properties (saturations at 1) of that solution

> Deduce the set where Dirac masses may appear in the primal problem.




Robustness of the support (continuous problem) 2/ 27

N .
For mo = ;. 3ig0sx, ;. define flw]

xo = (90(' —x0,1)s - (- — xo,n), @' (- — x0,1), .- @' (- — XO,N))

Theorem (D.-Peyré 2013)

Assume that Ty, has full rank, and that mq satisfies the Non Degenerate
Source Condition.
Then there exists, a > 0, Ao > 0 such that for 0 < A < Ao and ||w|2 < a),

> the solution my to Px(y + w) is unique and has exactly N spikes,
my =", ax,i0xy ;v

> the mapping (\, w) — (ax,x») is C*.

> the solution has the Taylor expansion

()= () + (o wmaigs) Crer [(F5)r=rie] ()
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» (Almost)-stability of the support for the deconvolution problem

> As the grid stepsize refines, stability decreases

» Try the grid free approaches the Sparse Spikes Deconvolution
on Numerical tours!

WWW.numerical-tours.com

Papers:
Exact Support Recovery for Sparse Spikes Deconvolution,
V. Duval & G. Peyré (JFoCM 2014)
Sparse Spikes Deconvolution on thin Grids
V. Duval & G. Peyré (ArXiv Preprint 2015)


www.numerical-tours.com

Thank you for your attention!
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup (y,p) s.t. sup|(®*p)(t)] < 1.
peL2(T) teT
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

fe
sup %6}, C> s.t. sup Z Cne2l7rnt <1

p
ceER2fct1 teT n——f.

Lemma (Dumitrescu)

A causal trigonometric polynomial ZHM:BI c,€%™ s bounded by one in

magnitude if and only if there exists a Hermitian matrix @ € CM*M such that

M—j ;
Q «c I
|2 f]rom X an={§i20, w_s

i=1
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup R(y,c) st [ y ;}EOand...

C€R2f5+17Q€H2fC+1
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup R(y,c) st [

C€R2f5+17Q€H2fC+1

c
—
N 1}_Oand

(@)

2
» Find the roots of Z,’:C:_fc c,Xft"|" — 1 on the unit circle:

e2l7’l’X1’ .

. e2l7’l’XN.
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

sup R(y,c) st [

C€R2f5+17Q€H2fC+1

c
—
N 1}_Oand

(@)

2
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How to solve Py(y) in the case of the ideal LPF? — use the
Fourier coefficients.

» Solve

C

sup R(y,c) st [

c€R?fe+1 QeHor 11

c
—
N 1}_Oand

2
» Find the roots of Z,’:C:_fc cpXfetn

e2l7’l’X1’ .

— 1 on the unit circle:

. e2l7’l’XN.

» Solve the system Z,’Yzl ape2™on = g for —f. < k < f,

There is a variant for Py(y) (Azais et al., 2013)
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EXAMPLE
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e " S

A measure mo = S, a0,i0x, ; satisfies the Non Degenerate Source Condition
if

> There exists n € Im ®* such that n € d|mg|(T), or equivalently:

> there exists a solution p to Dy(y),
> mg is a solution to Po(y)

> The minimal norm certificate 7o = ®* po satisfies

» Forallse T\ {xo,1,...xo,n}, [m0(s)| <1,
» Forallie{1,...N}, n{(xo,i) # 0.
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