Sparse spikes deconvolution on thin grids

Vincent Duval INRIA Rocquencourt MOKAPLAN Gabriel Peyré CNRS / Université Paris-Dauphine CEREMADE

Journées Imagerie 9 avril

International mathematics

Outline

1. The deconvolution problem

2. Discrete regularization

3. The continuous limit

Summary

1. The deconvolution problem

2. Discrete regularization

3. The continuous limit

Deconvolution

Measuring devices have a non sharp impulse response: our observations are **blurred** of a "true ideal scene".

- ► Geophysics,
- Astronomy,
- Microscopy,

. . .

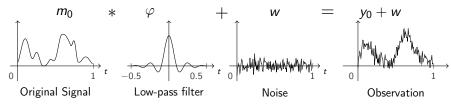
Spectroscopy,

Image courtesy of S. Ladjal

Goal: Obtain as much detail as we can from given measurements.

The Deconvolution Problem

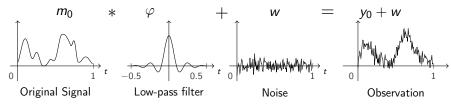
- Consider a signal m₀ defined on T = ℝ/Z (i.e. [0,1) with periodic boundary condition).
- Perturbation model:



Goal: recover m₀ from the observation y₀ + w = φ * m₀ + w (or simply y₀ = φ * m₀)

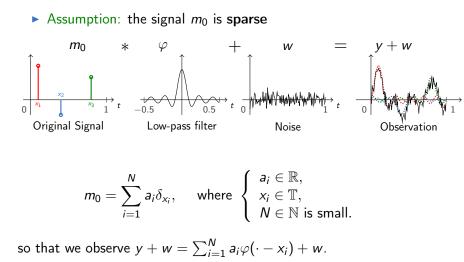
The Deconvolution Problem

- Consider a signal m₀ defined on T = ℝ/Z (i.e. [0,1) with periodic boundary condition).
- Perturbation model:



- Goal: recover m₀ from the observation y₀ + w = φ * m₀ + w (or simply y₀ = φ * m₀)
- Ill-posed problem:
 - ► the low pass filter might not be invertible (\$\u03c6_n = 0\$ for some frequency n\$)
 - ▶ even though, the problem is ill-conditioned (|\$\u03c6_n| ≪ |\$\u03c6₀| for high frequencies n\$)

The Deconvolution Problem



• Idea: Look for a **sparse** signal *m* such that $\varphi * m \approx y_0 + w$ (or y_0).

6 / 27

Can we guarantee that the reconstructed signal is close to the original one?

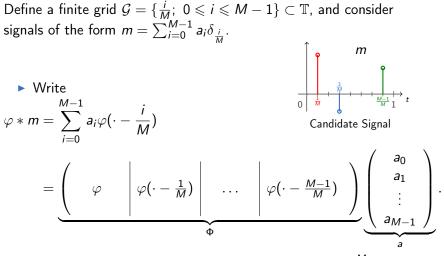
Summary

1. The deconvolution problem

2. Discrete regularization

3. The continuous limit

Discretization



Equivalent paradigm: Look for a sparse vector a ∈ ℝ^M such that Φa ≈ y₀ (or Φa ≈ y₀ + w).

Discrete ℓ^1 regularization

 LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda\|m\|_{\ell^{1}(\mathcal{G})}+\frac{1}{2}\|\Phi m-(y_{0}+w)\|_{2}^{2} \quad (\mathcal{P}_{\lambda}^{M}(y_{0}+w))$$

Discrete ℓ^1 regularization

Define
$$\|m\|_{\ell^{1}(\mathcal{G})} = \begin{cases} \sum_{i=0}^{M-1} |a_{i}| & \text{if } m = \sum_{i=0}^{M-1} a_{i}\delta_{i/M}, \\ +\infty & \text{otherwise.} \end{cases}$$

Basis Pursuit [Chen & Donoho (94)]

$$\inf_{m \in \mathcal{M}(\mathbb{T})} \|m\|_{\ell^1(\mathcal{G})} \text{ such that } \Phi m = y_0 \qquad (\mathcal{P}_0^M(y_0))$$

 LASSO [Tibshirani (96)] or Basis Pursuit Denoising [Chen et al. (99)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda\|m\|_{\ell^{1}(\mathcal{G})}+\frac{1}{2}\|\Phi m-(y_{0}+w)\|_{2}^{2} \quad (\mathcal{P}_{\lambda}^{M}(y_{0}+w))$$

 ℓ^2 -robustness (Grasmair et al. (2011))

If $m_0 = \sum_i a_{0,i} \delta_{i/M}$ is the unique solution to $\mathcal{P}_0^M(y_0)$, and $m_\lambda = \sum_i a_{\lambda,i}$ is a solution to $\mathcal{P}_\lambda^M(y_0 + w)$, then $\|a_\lambda - a_0\|_2 = \mathcal{O}(\|w\|_2)$ for $\lambda = C \|w\|_2$.

Robustness of the support (discrete problem)

Can one guarantee that Supp $m_{\lambda} = \text{Supp } m_0$?

Can one guarantee that Supp $m_{\lambda} = \text{Supp } m_0$?

- Sufficient conditions for Supp $m_{\lambda} \subseteq$ Supp m_0 :
 - Exact Recovery Principle (ERC) [Tropp (06)]
 - Weak Exact Recovery Principle (W-ERC) [Dossal & Mallat (05)]
- Almost necessary and sufficient Supp $m_{\lambda} = \text{Supp } m_0$
 - Fuchs criterion [Fuchs (04)]

See also [Vaiter et al. (14)] for more general regularizers, [Liang et al. (15)] for implications on the convergence rates of optimization methods.

Fuchs theorem

For $m_0 = \sum_{i=1}^M a_{0,i} \delta_{x_{0,i}}$, define

 $\eta_F =$

Theorem (Fuchs (04))

Assume that $\Phi_{x_0} \stackrel{\text{def.}}{=} (\varphi(\cdot - x_{0,1}), \dots \varphi(\cdot - x_{0,N}))$ has full rank. If $|\eta_F(\frac{k}{M})| < 1$ for all k such that $\frac{k}{M} \notin \{x_{0,1}, \dots, x_{0,N}\}$, then m_0 is the unique solution to $\mathcal{P}_0^M(y_0)$, and there exists $\gamma > 0$, $\lambda_0 > 0$ such that for $0 \leq \lambda \leq \lambda_0$ and $||w||_2 \leq \gamma \lambda$,

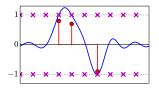
- The solution m_{λ} to $\mathcal{P}_{\lambda}^{M}(y_{0} + w)$ is unique.
- Supp m_{λ} = Supp m_0 , that is $m_{\lambda} = \sum_{i=1}^{N} a_{\lambda,i}^{M} \delta_{x_{0,i}}$, and $\operatorname{sign}(a_{\lambda,i}) = \operatorname{sign}(a_{0,i})$,

•
$$a_{\lambda,l}^M = a_{0,l} + \Phi_{x_0}^+ w - \lambda (\Phi_{x_0}^* \Phi_{x_0})^{-1} \operatorname{sign}(a_{0,l}).$$

If $|\eta_F(\frac{k}{M})| > 1$ for some k, the support is not stable.

Fuchs theorem

For
$$m_0 = \sum_{i=1}^M a_{0,i} \delta_{x_{0,i}}$$
, define
 $\eta_F = \Phi^* p_F$, where
 $p_F = \operatorname{argmin}\{\|p\|_{L^2(\mathbb{T})}; (\Phi^* p)(x_{0,i}) = \operatorname{sign}(a_{0,i})\}$
 $= \Phi_{x_0}^{+,*} s.$



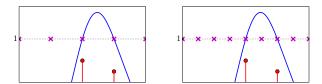
Theorem (Fuchs (04))

Assume that $\Phi_{x_0} \stackrel{\text{def.}}{=} (\varphi(\cdot - x_{0,1}), \dots, \varphi(\cdot - x_{0,N}))$ has full rank. If $|\eta_F(\frac{k}{M})| < 1$ for all k such that $\frac{k}{M} \notin \{x_{0,1}, \dots, x_{0,N}\}$, then m_0 is the unique solution to $\mathcal{P}_0^M(y_0)$, and there exists $\gamma > 0$, $\lambda_0 > 0$ such that for $0 \leq \lambda \leq \lambda_0$ and $||w||_2 \leq \gamma \lambda$,

- The solution m_{λ} to $\mathcal{P}_{\lambda}^{M}(y_{0} + w)$ is unique.
- Supp m_{λ} = Supp m_0 , that is $m_{\lambda} = \sum_{i=1}^{N} a_{\lambda,i}^{M} \delta_{x_{0,i}}$, and $\operatorname{sign}(a_{\lambda,i}) = \operatorname{sign}(a_{0,i})$,

•
$$a_{\lambda,l}^M = a_{0,l} + \Phi_{x_0}^+ w - \lambda (\Phi_{x_0}^* \Phi_{x_0})^{-1} \operatorname{sign}(a_{0,l}).$$

If $|\eta_F(\frac{k}{M})| > 1$ for some k, the support is not stable.



When the grid is too thin, the Fuchs criterion cannot hold \Rightarrow the support is *not stable*.

Question

What is the support at low noise when the Fuchs criterion does not hold?

The solution at low noise is supported on its **extended support** [Dossal (07)].

The extended support

- The solution to the Lasso P^M_λ(y₀ + w) is piecewise affine in (a₀, w, λ) [Osborne et al. (00)].
- Except for a Lebesgue negligible set of a₀, the last path in (w, λ) is of the form:

$$a_{\lambda}^{M} = a_{0} + \Psi w + \lambda \beta.$$

for some linear operator $\Psi : L^2(\mathbb{T}) \to \mathbb{R}^M$ and some $\beta \in \mathbb{R}^M$.

• The extended support is determined by Im Ψ + Span β .

Goal

Identify the extended support for the deconvolution problem.

Extended support on thin grids

Consider a sequence of refining grids with vanishing stepsize:

$$\mathcal{G}_n = \left\{ \frac{i}{M_n}; \ 0 \leqslant i \leqslant M_n - 1 \right\} \subset \mathbb{T} \quad \text{ with } \left\{ \begin{array}{l} \mathcal{G}_n \subset \mathcal{G}_{n+1} \ (\text{e.g. } M_n = \frac{1}{2^n}), \\ \lim_{n \to +\infty} M_n = +\infty, \end{array} \right.$$

Assume that Supp $m \subset G_n$ for *n* large enough, *i.e.*

$$m = \sum_{i=1}^{N} \alpha_{0,i} \delta_{x_{0,i}} = \sum_{k=0}^{M_n - 1} a_{0,k} \delta_{\frac{k}{M_n}}.$$

Theorem (D.-Peyré (13,15))

If m_0 is "non-degenerate", for n large enough, the extended support of m_0 on \mathcal{G}_n is given by

 $I \cup \{i + \varepsilon_i ; i \in I\} \quad \text{where} \quad I = \{i \in [\![0, M_n - 1]\!] ; a_{0,i} \neq 0\} \text{ and } \varepsilon \in \{\pm 1\}^{|I|}.$

Moreover, ε does not depend on n, and is given by

$$\varepsilon = (\mathsf{diag}(\mathsf{sign}(\alpha_0))) \operatorname{sign} \left((\Phi'_{\mathsf{x}_0} {}^* \mathsf{\Pi} \Phi'_{\mathsf{x}_0})^{-1} \Phi'_{\mathsf{x}_0} {}^* \Phi^{+,*}_{\mathsf{x}_0} \operatorname{sign}(\alpha_0) \right).$$

where Π is the orthogonal projector onto $(\operatorname{Im} \Phi_{x})^{\perp}$

Low noise "robustness" on thin grids

Under the same hypotheses:

Theorem (D.-Peyré (15))

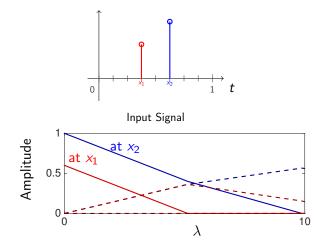
There exists $\gamma^{(n)} > 0$, $\lambda_0^{(n)} > 0$ such that for $0 \leqslant \lambda \leqslant \lambda_0^{(n)}$ and $\|w\|_2 \leqslant \gamma^{(n)}\lambda$,

• The solution
$$m_{\lambda}^{(n)}$$
 to $\mathcal{P}_{\lambda}^{M_n}(y_0 + w)$ is unique.

Supp
$$m_{\lambda}^{(n)} = \bigcup_{1 \leq i \leq N} \left\{ x_{0,i}, x_{0,i} + \frac{\varepsilon_i}{M_n} \right\}$$
, that is
$$m_{\lambda}^n = \sum_{i=1}^N \left(a_{\lambda,i}^{(n)} \delta_{x_{0,i}} + b_{\lambda,i}^{(n)} \delta_{x_{0,i} + \frac{\varepsilon_i}{M_n}} \right)$$
, and
$$\operatorname{sign}(a_{\lambda,i}) = \operatorname{sign}(b_{\lambda,i}) = \operatorname{sign}(a_{0,i})$$
 $\left(a_{\lambda,i}^{(n)} \right) = \left(a_{0,i}^{(n)} \right) + \Phi_{x_0,x_0+\varepsilon}^+ w - \lambda (\Phi_{x_0,x_0+\varepsilon}^* \Phi_{x_0,x_0+\varepsilon})^{-1} \left(\operatorname{sign}(a_{0,i}) \right)$

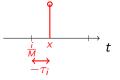
In fact
$$\gamma^{(n)} = O(1)$$
 and $\lambda_0^{(n)} = O(\frac{1}{M_n})$.

Numerical experiments



Variant: the "Continuous" Basis Pursuit

A semi-discrete approach : try to "interpolate" the positions.



Idea: if x is not on the grid:

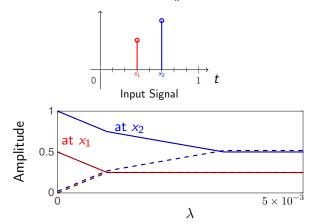
$$\begin{aligned} a\varphi(\cdot - x) &\approx a\varphi(\cdot - \frac{i}{M}) + a\varphi'(\cdot - \frac{i}{M})(-x + \frac{i}{M}) \\ &= a\varphi(\cdot - \frac{i}{M}) + a\tau_i\varphi'(\cdot - \frac{i}{M}) \quad \text{where} \quad \tau_i = -x + \frac{i}{M}. \end{aligned}$$

- Set $b_i = 2a\tau_i M$, so that $|b_i| \leq a$ is $a \geq 0$.
- Solve the Continuous Basis Pursuit [Ekhanadam (11)]

$$\inf_{\substack{(a,b)\in\mathbb{R}^+\times\mathbb{R}\\|b|\leqslant a}}\lambda \|a\|_{\ell^1} + \frac{1}{2}\|\Phi a + \frac{1}{2M}\Phi'b - (y_0 + w)\|_2^2$$

Study on thin grids

- The Continuous Basis Pursuit is equivalent to a Lasso with positivity constraint.
- Extended support: again pairs of spikes.
- Stability constants: $\lambda_0^{(n)} = O(\frac{1}{M_n^3})$



Summary

1. The deconvolution problem

2. Discrete regularization

3. The continuous limit

The total variation

Define the **total variation of the measure** $m \in \mathcal{M}(\mathbb{T})$ as: $|m|(\mathbb{T}) = \sup \left\{ \int \psi dm; \psi \in C(\mathbb{T}), \|\psi\|_{\infty} \leq 1 \right\}$ $m_0 = \sum_{i=1}^N a_{0,i} \delta_{x_{0,i}}$

$$(J_{\mathbb{T}})$$
 J U I I

Example : If
$$m = \sum_{i=0}^{N} a_i \delta_{x_i}$$
, then $|m|(\mathbb{T}) = \sum_{i=0}^{N} |a_i|$.
If $m = fd\mathcal{L}$, then $|m|(\mathbb{T}) = \int_{\mathbb{T}} |f(t)| dt$.

Such a regularization has been considered in [de Castro & Gamboa (12), Candes & Fernandez-Granda (13), Bredies & Pikkarainen (13), Recht et al. (12)].

Continuous framework for deconvolution

Using the total variation of measures: $|m|(\mathbb{T}) = \sup \left\{ \int_{\mathbb{T}} \psi dm; \psi \in C(\mathbb{T}), \|\psi\|_{\infty} \leq 1 \right\}$

> Basis Pursuit for measures [de Castro & Gamboa (12), Candes & Fernandez-Granda (13)],

$$\inf_{m \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0^\infty(y_0))$$

LASSO for measures [Recht et al. (12), Bredies & Pikkarainen (13), Azais et al. (13)]

$$\inf_{m\in\mathcal{M}(\mathbb{T})}\lambda|m|(\mathbb{T})+\frac{1}{2}\|\Phi m-(y_0+w)\|_2^2 \qquad (\mathcal{P}^{\infty}_{\lambda}(y_0+w))$$

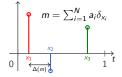
Numerical methods for solving $\mathcal{P}_0(y_0)$ and $\mathcal{P}_\lambda(y_0 + w)$ are proposed in [Bredies & Pikkarainen (13), Candes & Fernandez-Granda (13)]

Identifiability for discrete measures

Minimum separation distance of a measure m:

$$\Delta(m) = \min_{x, x' \in \mathsf{Supp}\, m, x \neq x'} |x - x'|$$

Ideal Low Pass filter: $\varphi(t) = \frac{\sin(2f_c+1)\pi t)}{\sin \pi t}$ i.e $\hat{\varphi}_n = 1$ for $|n| \leq f_c$, 0 otherwise.



Theorem (Candès & Fernandez-Granda (2013))

Let φ be the ideal low-pass filter. There exists a constant C > 0such that, for any (discrete) measure m_0 with $\Delta(m_0) \ge \frac{C}{f_c}$, m_0 is the unique solution of

$$\inf_{m \in \mathcal{M}(\mathbb{T})} |m|(\mathbb{T}) \text{ such that } \Phi m = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

where $y_0 = \Phi m_0$.

4

Remark: $1 \leq C \leq 1.87$.

Limit of the functionals

We say that $m_n \in \mathcal{M}(\mathbb{T})$ weakly * converges towards $m \in \mathcal{M}(\mathbb{T})$ if

$$\forall f \in C(\mathbb{T}), \lim_{n \to +\infty} \int_{\mathbb{T}} f \mathrm{d} m_n = \int_{\mathbb{T}} f \mathrm{d} m.$$

Consider a sequence $(m_n)_{n \in \mathbb{N}} \in \mathcal{M}(\mathbb{T})^{\mathbb{N}}$ such that each m_n is a minimizer of $\mathcal{P}_0^{M_n}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{M_n}(y_0 + w)$).

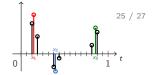
Theorem ([Tang et al. 13])

The sequence $(m_n)_{n\in\mathbb{N}}$ has convergent subsequences for the weak * convergence, and each limit point is a minimizer of $\mathcal{P}_0^{\infty}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$).

Remark: In fact $\mathcal{P}_0^{M_n}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$ Γ -converges towards $\mathcal{P}_0^{\infty}(y_0)$ (resp. $\mathcal{P}_{\lambda}^{\infty}(y_0 + w)$).

Fine properties of the support

More precisely, if the solution $m^{\infty} = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$ to $\mathcal{P}^{\infty}_{\lambda}(y_0 + w)$ (resp. $\mathcal{P}^{\infty}_{0}(y_0)$) is "non-degenerate",



▶ then the solution m_n to P[∞]_λ(y₀ + w) (resp. P₀(y₀)) is made of pairs consecutive spikes:

$$m_n = \sum_{i=1}^{N} (a_i \delta_{k_i/M} + b_i \delta_{(k_i + \varepsilon_i)/M})$$

with sign(a_i) = sign(b_i) = sign(\alpha_i), \varepsilon_i \in \{\pm 1\}

▶ At low noise, if the original measure is on the grid, pairs of consecutive spikes (including the original one) (see Section 1).

Outline of the argument

- Approximate the solution of the **dual** to $\mathcal{P}_{\lambda}^{\mathcal{M}}$ with the solution of the dual to $\mathcal{P}_{\lambda}^{\infty}$,
- Control the properties (saturations at ± 1) of that solution
- Deduce the set where Dirac masses may appear in the primal problem.

Robustness of the support (continuous problem) 26 / 27

For $m_0 = \sum_{i=1}^N a_{i_0} \delta_{x_{0,i}}$, define

$$\Gamma_{\mathbf{x_0}} = \left(\varphi(\cdot - \mathbf{x_{0,1}}), \dots \varphi(\cdot - \mathbf{x_{0,N}}), \varphi'(\cdot - \mathbf{x_{0,1}}), \dots \varphi'(\cdot - \mathbf{x_{0,N}})\right)$$

Theorem (D.-Peyré 2013)

Assume that Γ_{x_0} has full rank, and that m_0 satisfies the Non Degenerate Source Condition.

Then there exists, $\alpha > 0$, $\lambda_0 > 0$ such that for $0 \leqslant \lambda \leqslant \lambda_0$ and $\|w\|_2 \leqslant \alpha \lambda$,

- the solution m_{λ} to $\mathcal{P}_{\lambda}(y + w)$ is unique and has exactly N spikes, $m_{\lambda} = \sum_{i=1}^{N} a_{\lambda,i} \delta_{x_{\lambda,i}}$,
- the mapping $(\lambda, w) \mapsto (a_{\lambda}, x_{\lambda})$ is C^1 .
- the solution has the Taylor expansion

$$\begin{pmatrix} a_{\lambda} \\ x_{\lambda} \end{pmatrix} = \begin{pmatrix} a_{0} \\ x_{0} \end{pmatrix} + \begin{pmatrix} I & 0 \\ 0 & \text{diag } a_{0}^{-1} \end{pmatrix} (\Gamma_{x_{0}}^{*} \Gamma_{x_{0}})^{-1} \left[\begin{pmatrix} \text{sign}(a_{0}) \\ 0 \end{pmatrix} \lambda - \Gamma_{x_{0}}^{*} w \right] + o \begin{pmatrix} \lambda \\ w \end{pmatrix}$$

Conclusion

- (Almost)-stability of the support for the deconvolution problem
- As the grid stepsize refines, stability decreases
- Try the grid free approaches the Sparse Spikes Deconvolution on Numerical tours!

www.numerical-tours.com

Papers:

Exact Support Recovery for Sparse Spikes Deconvolution, V. Duval & G. Peyré (JFoCM 2014) Sparse Spikes Deconvolution on thin Grids V. Duval & G. Peyré (ArXiv Preprint 2015) Thank you for your attention!

Azais, J.-M., De Castro, Y., and Gamboa, F. (2013). Spike detection from inaccurate samplings. Technical report.
Bredies, K. and Pikkarainen, H. (2013). Inverse problems in spaces of measures. *ESAIM: Control, Optimisation and Calculus of*

Variations, 19:190-218.

- Candès, E. J. and Fernandez-Granda, C. (2013). Towards a mathematical theory of super-resolution. *Communications on Pure and Applied Mathematics. To appear.*
- Chen, S. and Donoho, D. (1994). Basis pursuit. Technical report, Stanford University.
- Chen, S., Donoho, D., and Saunders, M. (1999). Atomic decomposition by basis pursuit. *SIAM journal on scientific computing*, 20(1):33–61.
- de Castro, Y. and Gamboa, F. (2012). Exact reconstruction using beurling minimal extrapolation. *Journal of Mathematical Analysis and Applications*, 395(1):336–354.
- Dossal, C. and Mallat, S. (2005). Sparse spike deconvolution with minimum scale. In *Proceedings of SPAPS*, pages 123–126

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{\rho \in L^2(\mathbb{T})} \langle y, \rho \rangle \quad \text{ s.t. } \sup_{t \in \mathbb{T}} |(\Phi^* \rho)(t)| \leqslant 1.$$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c\in\mathbb{R}^{2f_{c}+1}}\Re\langle\hat{y},c\rangle \quad \text{ s.t. } \sup_{t\in\mathbb{T}}\left|\sum_{n=-f_{c}}^{f_{c}}c_{n}e^{2i\pi nt}\right|\leqslant 1.$$

Lemma (Dumitrescu)

A causal trigonometric polynomial $\sum_{n=0}^{M-1} c_n e^{2i\pi nt}$ is bounded by one in magnitude if and only if there exists a Hermitian matrix $Q \in \mathbb{C}^{M \times M}$ such that

$$\left[\begin{array}{cc} Q & c \\ c^* & 1 \end{array}\right] \succeq 0 \text{ and } \sum_{i=1}^{M-j} Q_{i,i+j} = \left\{\begin{array}{cc} 1, j = 0 \\ 0, j = 1, 2 \dots M - 1 \end{array}\right.$$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re \langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{cc} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

г.

٦

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

►

$$\sup_{c \in \mathbb{R}^{2f_{c}+1}, Q \in \mathcal{H}_{2f_{c}+1}} \Re\langle \hat{y}, c \rangle \quad \text{s.t.} \quad \left[\begin{array}{c} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \dots$$

Find the roots of $\left| \sum_{n=-f_{c}}^{f_{c}} c_{n} X^{f_{c}+n} \right|^{2} - 1$ on the unit circle:
 $e^{2i\pi x_{1}}, \dots, e^{2i\pi x_{N}}.$

ГО

п

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re\langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{c} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

- Find the roots of $\left|\sum_{n=-f_c}^{f_c} c_n X^{f_c+n}\right|^2 1$ on the unit circle: $e^{2i\pi x_1}, \ldots, e^{2i\pi x_N}$.
- ► Solve the system $\sum_{n=1}^{N} a_n e^{2i\pi k x_n} = \hat{y}_k$ for $-f_c \leqslant k \leqslant f_c$

How to solve $\mathcal{P}_0(y)$ in the case of the ideal LPF? \longrightarrow use the **Fourier coefficients**.

Solve

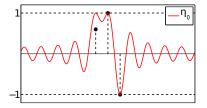
$$\sup_{c \in \mathbb{R}^{2f_c+1}, Q \in \mathcal{H}_{2f_c+1}} \Re\langle \hat{y}, c \rangle \quad \text{ s.t. } \left[\begin{array}{cc} Q & c \\ c^* & 1 \end{array} \right] \succeq 0 \text{ and } \ldots$$

- Find the roots of $\left|\sum_{n=-f_c}^{f_c} c_n X^{f_c+n}\right|^2 1$ on the unit circle: $e^{2i\pi x_1}, \ldots, e^{2i\pi x_N}$.
- ▶ Solve the system $\sum_{n=1}^{N} a_n e^{2i\pi k x_n} = \hat{y}_k$ for $-f_c \leqslant k \leqslant f_c$

There is a variant for $\mathcal{P}_{\lambda}(y)$ (Azais et al., 2013)

EXAMPLE

The Non Degenerate Source Condition



Definition

A measure $m_0 = \sum_{i=1}^N a_{0,i} \delta_{x_{0,i}}$ satisfies the Non Degenerate Source Condition if

- There exists $\eta \in \operatorname{Im} \Phi^*$ such that $\eta \in \partial |m_0|(\mathbb{T})$, or equivalently:
 - there exists a solution p to $\mathcal{D}_0(y)$,
 - m_0 is a solution to $\mathcal{P}_0(y)$
- The minimal norm certificate $\eta_0 = \Phi^* p_0$ satisfies
 - ▶ For all $s \in \mathbb{T} \setminus \{x_{0,1}, \dots x_{0,N}\}$, $|\eta_0(s)| < 1$,
 - For all $i \in \{1, ..., N\}$, $\eta_0''(x_{0,i}) \neq 0$.