Fluid flows analysis from image sequences

E. Memin

Fluminance

Journée Traitement d’Images
Insa Rouen 9 avril 2015
Fluid motion image analysis

Observation and analysis of flows from image sequences

- Environmental sciences (surveillance, forecasting, analysis of geophysical fluid)
- Hydrodynamic, aeronautic (turbulent wakes)
- Life sciences (bio-fluids)

Generic image analysis approaches inappropriate

Goals

Propose tools and models for the measurement, the analysis and the control of flows
Fluid motion image analysis

Observation and analysis of flows from image sequences

- Environmental sciences (surveillance, forecasting, analysis of geophysical fluid)
- Hydrodynamic, aeronautic (turbulent wakes)
- Life sciences (bio-fluids)

Generic image analysis approaches inappropriate

Goals

Propose tools and models for the measurement, the analysis and the control of flows
Objective

Explore techniques to extract characteristic features of fluid flows along time

Axes of work

- **Estimation** of fluid flow velocity descriptors (reduced parametric or non-parametric representations of the flow)
- **Tracking** of salient fluid flows structures
- **Characterization** of reduced flow description
Fluid flows velocity estimation

Motion estimation problem

- Estimate \(v : \Omega \subset \mathbb{R}^2 \rightarrow v(x) = (u_x(x), u_y(x))^T \)
- From \(I : \Omega \times [0, T] \rightarrow I(x, t) \)

Hypothesis

- Motion related to the photometric variations
- Motion field is spatially smooth

Methods

- Discrete correlations
- Differential techniques
Correlation techniques

Principle

\[\nu(x) = \arg \min_{\nu \in \{-U, \ldots, U\} \times \{-V, \ldots, V\}} \sum_{r \in \mathcal{W}(x)} C(l_2(r + \nu), l_1(r)) \]

- \(C \): squared difference or correlation function
- \(\nu \): discrete state space and rough spatial parameterization

Pro and Cons

- Fast (with FFT) local techniques
- Prone to erroneous spatial variabilities
- No spatial propagation of errors
- Difficult coupling with physical constraints
- Require non ambiguous photometric patterns
- Large scale measurements in practice
Differential techniques

Principle

\[v(x) = \arg \min \int_{\Omega} \left\{ \left(\frac{dl}{dt} + f(l, v) \right)^2 + \lambda \left(g\left(\partial_{x_i y_j}^i+^j u_x, \partial_{x_i y_j}^i+^j u_y \right) \right) \right\} dx \]

- Functional gradient discretized (finite elements or finite differences)

Pro and Cons

- More general
- Theoretically finer spatial scales
- Propagation of errors
- Easy coupling with physical constraints
Differential techniques

Generic fluid motion estimator [Corpetti et al. PAMI 02, Yuan et al. JMIV 07]

- Data model: \[\int_{\Omega} \left(\frac{dl}{dt} \right)^2 dx \]
- Smoothing function: \[\int_{\Omega} (\| \nabla \text{curl} v \|^2 + \| \nabla \text{div} v \|^2) dx \]
- Mimetic finite differences
Differential techniques

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: \[\int_{\Omega} \left(\frac{dl}{dt} + l \text{div} \nu \right)^2 dx \]
- Smoothing function: \[\int_{\Omega} (\| \nabla \text{curl} \nu \|^2 + \| \nabla \text{div} \nu \|^2) dx \]

Airplane wing tip’s Vortex
Differential techniques

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: \(\int_{\Omega} \left(\frac{dI}{dt} + I \text{div} \mathbf{v} \right)^2 d\mathbf{x} \)

- Smoothing function: \(\int_{\Omega} (\| \nabla \text{curl} \mathbf{v} \|^2 + \| \nabla \text{div} \mathbf{v} \|^2) d\mathbf{x} \)

Vorticity map
Differential techniques

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: \(\int_{\Omega} \left(\frac{dl}{dt} + l\text{div}\nu \right)^2 dx \)

- Smoothing function: \(\int_{\Omega} (\|\nabla \text{curl}\nu\|^2 + \|\nabla \text{div}\nu\|^2) dx \)

Divergence map
Differential techniques

Schlieren motion estimator [Arnaud et al. ECCV 06]

- Data model: \[\int_{\Omega} \left[\frac{dl}{dt} + \frac{1}{2} l (\partial_x u_y + \partial_y u_x) \right]^2 dx \]

- Smoothing function: \[\int_{\Omega} \| \nabla \text{curl} v \|^2 dx \]

- Additional constraint \(\text{div} v \simeq 0 \)
Differential techniques

Atmospheric motion layers estimator [Papadakis et al. TGRS 07]

- Data model: \[\sum_k \int_{\Omega} \left[\frac{dh^k}{dt} + h^k \text{div} v^k_{xy} - g \left(\rho^k u_z^k - \rho^{k+1} u_z^{k+1} \right) \right]^2 dx \]

- Smoothing function:
\[\sum_k \int_{\Omega} \left(\| \nabla \text{curl} v^k_{xy} \|^2 + \| \nabla \text{div} v^k_{xy} \|^2 + \| \nabla u_z^k \|^2 \right) dx \]

Top of cloud pressure layers Wind fields Vert. wind. higher layer
Differential techniques

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

- Data model: \(\int_{\Omega} (\nabla I^t v^\theta + \partial_t I)^2 dx \)

- Dedicated parametric representation:

\[
v^\theta(x) = \sum_i \gamma_i^{so} \nabla^\perp g_\sigma(x - x_i^{so}) + \sum_j \gamma_j^{ir} \nabla g_\sigma(x - x_j^{ir})
\]

particles
velocity
vorticity
Differential techniques

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

- Data model: \[\int_{\Omega} (\nabla I^t \nu^\theta + \partial_t I)^2 \, dx \]
- Dedicated parametric representation:

\[\nu^\theta(x) = \sum_i \gamma_i^{so} \nabla^\perp g_{\sigma}(x - x_i^{so}) + \sum_j \gamma_j^{ir} \nabla g_{\sigma}(x - x_j^{ir}) \]
Differential techniques

Real experiments, wake flow at Re 3900 [Derrian et al. SSVM 11]
Fluid Motion estimation

Optical-flow versus PIV

- Results of similar quality on noise free particle images of 2D flow
- Physical constraints and dense representation
- No post processing

Black DNS; Red Corpetti-02; Blue Lavision (Davis 7.2); Green Yuan-07
Fluid Motion estimation

Optical-flow versus PIV

- Results of similar quality on noise free particle images of 2D flow
- Physical constraints and dense representation
- No post processing

Common drawbacks

- No velocity measurements of the small scales
- No dynamical consistancy
- Difficult tuning of the smoothing parameter
Tracking of flow representations

Exploration of 2 methodological frameworks

Stochastic filtering
- Only adapted to reduced descriptors
- Recursive probabilistic frameworks
- Estimation of error covariance

Variational assimilation
- Well suited to high dimensional features
- Deterministic frameworks
- Batch processing
Stochastic filtering in a non linear setting

Principle

- Given \(dx_t = M(x_t)dt + \sigma(t)dB_t \) and \(y_k = H(x_k) + \gamma_k \)
- Estimate the pdf \(p(x_{0:k}|y_{1:k}) = p(x_{0:k-1}|y_{1:k-1}) \frac{p(y_k|x_{t=k})p(x_{t=k}|x_{k-1})}{p(y_k|y_{1:k-1})} \)

Gaussian linear model: Kalman Filtering

\[
\begin{align*}
 &\mathbb{E}(x_k|y_{1:k}) = x_k^a = x_{k|k-1} + K(y_t - Hx_{k|k-1}), \\
 &K = \Sigma_{k|k-1}H^T(H\Sigma_{k|k-1}H^T + R)^{-1} \\
 &\mathbb{E}((x_k - x_k^a)(x_k - x_k^a)^T|y_{1:k}) = P_k^a = (I - KH)\Sigma_{k|k-1}
\end{align*}
\]

Non Linear dynamics, linear measure: Ensemble Kalman Filtering

Kalman updates computed from a set of samples \(x_t^{(i)}, i = 1, \ldots, N \)
Particle Filter

Non-linear dynamics and observations

- \(p(x_k|z_{1:k}) \approx \sum_i w_k^{(i)} \delta_{x_k^{(i)}} \)
- prediction step (importance distribution sampling \(\pi \))

\[
x_k^{(i)} \sim \pi(x_{0:k}|y_{1:k}) = \pi(x_{0:k-1}|y_{1:k-1})\pi(x_k|y_{1:k}, x_{0:k-1})
\]
- correction step

\[
w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(y_k|x_k^{(i)})p(x_k^{(i)}|x_{k-1}^{(i)})}{\pi(x_k^{(i)}|x_{0:k-1}^{(i)}, y_{1:k})}
\]
Ensemble Kalman filter extension

Importance distribution

- Bootstrap filter

\[
\pi(x_k|x_{0:k-1}^{(i)}, y_{1:t}) = p(x_k|x_{k-1}^{(i)}) \Rightarrow w_k^{(i)} \propto w_{k-1}^{(i)} p(y_k|x_k^{(i)})
\]

⇒ strong limitation in high dimensional space

- Ensemble Kalman proposal distribution (Papadakis et al. Tellus 10)

\[
\pi(x_k|x_{0:k-1}^{(i)}, y_{1:k}) = p(x_k|x_{k-1}^{(i)}, y_k) \approx \mathcal{N}(x_k^{a}, (I - K^e H)\Sigma_k|_{k-1})
\]

\[
w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(y_k|x_k^{(i)})p(x_k^{(i)}|x_{k-1}^{(i)})}{\mathcal{N}(x_k^{(i)} - x_k^{a}; 0, P_k^{a})}
\]

where with linear observation operator

\[
(N-1)P_k^a = x_k^f x_k^f T - x_k^f x_k^f T H^T (H x_k^f x_k^f T H^T + \tilde{R})^{-1} H x_k^f x_k^f T
\]
Ensemble Kalman filter extension

Importance distribution

- Bootstrap filter

\[\pi(x_k|x_{0:k-1}^{(i)}, y_{1:t}) = p(x_k|x_{k-1}^{(i)}) \Rightarrow w_k^{(i)} \propto w_{k-1}^{(i)} p(y_k|x_k^{(i)}) \]

\(\Rightarrow \) strong limitation in high dimensional space

- Ensemble Kalman proposal distribution (Papadakis et al. Tellus 10)

\[\pi(x_k|x_{0:k-1}^{(i)}, y_{1:k}) = p(x_k|x_{k-1}^{(i)}, y_k) \approx \mathcal{N}(x_k^a, (I - K^eH)\Sigma_e^k x_{k-1}^{(i)}) \]

\[w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(y_k|x_k^{(i)})p(x_k^{(i)}|x_k^{(i)})}{\mathcal{N}(x_k^{(i)} - x_k^a; 0, P_k^a)} \]

with nonlinear observation operator (Beyou et al. Tellus 13)

\[(N - 1)P_k^a = x_k^f x_k^f^T - x_k^f H(x_k^f)^T (H(x_k^f)H(x_k^f)^T + \tilde{R})^{-1} H(x_k^f)x_k^f^T \]
Vorticity recovering from image data

Experiments: 2D velocity-vorticity

- **Dynamics**
 \[
 d\xi + \nabla \xi \cdot \mathbf{w} \, dt = \frac{1}{Re} \Delta \xi \, dt + \sigma_Q \, dW,
 \]

- \(dW\) isotropic Gaussian field
 \[
 Q(r, \tau) = \mathbb{E}(dW(x, t)dW(x + r, t + \tau)) = g_\lambda(r)dt\delta(\tau),
 \]

\[
\sigma_Q = 0.1 \quad \sigma_B = 1 \quad \sigma_Q = 0.1 \quad \sigma_B = 0.5 \quad \sigma_Q = 0.1 \quad \sigma_B = 0.1
\]
Vorticity recovering from image data

Filtering system

- Velocity-vorticity stochastic formulation

\[d\xi + \nabla \xi \cdot w \, dt = \frac{1}{Re} \Delta \xi \, dt + \sigma_Q \, dW, \]

- Measurements

1) Local motion measurements

\[y_k = w + \gamma_k \]

2) Image reconstruction error

\[I(x, k) = I(x + d_{k+1}(x), k + 1) + \eta_k \]
Results: 2D DNS sequence

passive scalar

vorticity
Results: 2D DNS sequence

RMSE vorticity

Energy Spectrum
Results: 2D DNS sequence

Filtering results (initialization with local motion estimates)
Results: Oceanic SST images
Stochastic filtering for curve tracking

Curve tracking

- **Objective**: track the evolution of a 2D closed curve in the image domain
- **Difficulty**: evolution model not accessible (projection of a moving 3D curve)
- \(\Rightarrow \) stochastic dynamics inferred from the data with a low dimensional noise
Stochastic filtering for curve tracking

Curve tracking (Avenel et al. JMMIV 14)

- Curve described through an implicit function φ
 $$C_t = \{x | \varphi(x, t) = 0\}$$
 \Rightarrow The curve is specified as the zero level set of φ

- Curve dynamics driven by the data and low dimensional noise
 $$dC_t = w_n nt + \sigma_1 n dB_t^n + \sigma_2 n^\perp dB_t^\perp$$

- Deformation field: extension to the whole plane of the curve evolution
 $$dX_t = w_n^* \frac{\nabla \varphi}{|\nabla \varphi|} dt + \sigma_n \frac{\nabla \varphi}{|\nabla \varphi|} dB_t^n + \sigma_{\tau} \frac{\nabla \varphi^\perp}{|\nabla \varphi|} dB_t^\perp$$

- Surface φ transported by the curve deformation field:
 $$d\varphi(t, x) = 0$$
 \Rightarrow Require the computation of $d\varphi(X_t, t)$
Differential of the implicit surface

- Surface φ is necessarily a stochastic process
 For a fixed point y, φ solution of

 $$d\varphi_t(y) = b(y, t)dt + f(y, t)dB_{n,t} + g(y, t)dB_{\tau,t},$$

- Use of Ito-Wentzell formula (differential of $\varphi \circ X_t$)

 $$d\varphi(x, t) = d\varphi_t(x) + \nabla \varphi^T dX_t + \frac{1}{2} \sum_{i,j} d\left\langle X^i_t, X^j_t \right\rangle \frac{\partial^2 \varphi}{\partial x_i \partial x_j}$$

 $$+ \sum_i d\left\langle \frac{\partial \varphi}{\partial x_i}, \left. X^i_t \right\rangle_t = 0$$
Differential of the implicit surface

- Surface φ is necessarily a stochastic process
 For a fixed point y, φ solution of

 $$
 d\varphi_t(y) = b(y, t)dt + f(y, t)dB_{n,t} + g(y, t)dB_{\tau,t},
 $$

- Use of Ito-Wentzell formula (differential of $\varphi \circ X_t$)

 $$
 d\varphi_t(x) = -\nabla\varphi^T w_n^* dt - \frac{\sigma_n^2}{2} dt \left(\Delta \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) + \frac{\sigma_n^2}{2} \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) - \sigma_n |\nabla \varphi| dB_{n,t},
 $$
Stochastic filtering for curve tracking

Definition of the transportation motion field

- Infer directly the velocity from each particle displacements
- Adjunction of a new vectorial level set ψ representative of the grid coordinates at the previous time transported by the curve

\[\psi^k(x, k - 1) = x \]

\(\psi^k(x, t) \Rightarrow \) coordinates of point \(x \) at time \(k - 1 \) for \(t \in [k - 1, k] \)

- Ito-Wentzell formula for the differential of \(\psi^k \)

\[
d\psi^i_t(x) = -\left(\nabla \psi^i_t\right)^T v^*_n dt \\
- \left(\nabla \psi^i_t\right)^T \left(\frac{\nabla \varphi}{|\nabla \varphi|} \sigma_n dB_{n,t} + \frac{\nabla \varphi}{|\nabla \varphi|} \sigma_\tau dB_{\tau,t} \right) \\
- A_i dt + \frac{\sigma_n F_i}{|\nabla \varphi|} dt + \frac{\sigma_\tau G_i}{|\nabla \varphi|}. \]
Definition of the transportation motion field

- Transportation motion field

\[v^*(x, t)dt = \frac{1}{\Delta t}(x - E(\psi^k(x, k)|C_k)), \forall t \in [k, k + 1], \]

Considering the particle approximation this velocity field is computed as:

\[v^*(x, t)dt = \frac{1}{\Delta t} \left(x - \frac{1}{N} \sum_{i=1}^{N} w^{(i)} \psi^{k,(i)}(x, k) \right), \tag{1} \]

for \(t \in [k, k + 1] \), with \(\psi^{k,(i)} \) auxiliary function associated to particle \(\varphi_k^{(i)} \) and \(w_k^{(i)} \) its importance weight.
Likelihood definition

Likelihood that depends on the similarity between photometric distributions inside the curve at times $t = 0$ and $t = k$.

$$p(y_t | C_t^{(i)}) \propto \exp\{-\lambda d(h_0, h_k^{(i)})\}, \quad (2)$$

d: Hellinger distance between h_0 the reference interior histogram at time 0 and $h_k^{(i)}$ the histogram associated to the i-th surface sample at time k

$$d(p, q) = \left(1 - \sum_{j \in X} \sqrt{p(j)q(j)}\right)^{1/2}.$$
Stochastic filtering for curve tracking

Results

Convective cell tracking
Convective cell: velocity field applied
Results

Convective cell: curve points trajectories
Stochastic filtering for curve tracking
Variational assimilation

Principle

- **Initial condition + dynamical law**

\[
\frac{\partial \mathbf{x}}{\partial t}(x, t) + \mathbb{M}(\mathbf{x}(x, t)) = p(x, t)
\]
\[\mathbf{x}(x, t_0) = \mathbf{x}_0(x) + \epsilon_n(x),\]

- **+ observations**

\[
\mathbf{y}(x, t) = \mathbb{H}(\mathbf{x}(x, t)) + \epsilon_o(x, t)
\]

\(\mathbf{x}_0\) initial condition \((t_0)\) and \((p(t), \epsilon_n)\) control variables.

- **Minimize w.r.t. \((p, \epsilon_n)\)**

\[
J(p, \epsilon_n) = \int_{t_0}^{t_f} \left\| \mathbf{y}(x, t) - \mathbb{H}(\mathbf{x}(x, t)) \right\|_R^2 + \int_{t_0}^{t_f} \left\| p(x, t) \right\|_Q^2 + \left\| \epsilon_n \right\|_B^2
\]
Variational assimilation

Functional gradient

- Introduction of an adjoint variable

\[
\begin{align*}
- \frac{\partial \lambda}{\partial t} (t) + (\partial_x M)^* \lambda(t) &= (\partial_x H)^* R^{-1} (y - H(x))(t) \\
\lambda(t_f) &= 0,
\end{align*}
\]

- Functional gradient

\[
\begin{align*}
\partial_p J &= Q^{-1} (\partial_t x + M(x)) - \lambda, \\
\partial_{\epsilon_n} J &= \lambda(t_0) + B^{-1} (x(t_0) - X_0)
\end{align*}
\]
Variational assimilation for atmospheric layer motion tracking (Papadakis 07, Corpetti et al. Tellus 09)

Context: multi-layer imagery

- Sparse images (clouds), inaccurate vertical coordinates

Layer surfaces s^k

- cloud classified in $k-th$ layer
- s^k defined by clouds altitude in C^k

Sparse pressure differences h_{obs}^k

$$h_{obs}^k = \begin{cases}
\bar{p}(s^k) - p(x, y, s^{k+1}) & \text{if } (x, y) \in C^{k+1} \\
0 & \text{else}
\end{cases}$$
Variational assimilation for atmospheric layer motion tracking (Papadakis 07, Corpetti et al. Tellus 09)

Context: multi-layer imagery

- Sparse images (clouds), inaccurate vertical coordinates

![EUMETSAT](image1)
![EUMETSAT](image2)

Sparse images \((h_{obs}^1, h_{obs}^2, h_{obs}^3) \) for a 3 layer decomposition

Layer surfaces \(s^k \)
- Cloud classified in \(k^{th} \) layer
- \(s^k \) defined by clouds altitude in \(C^k \)

Sparse pressure differences \(h_{obs}^k \)

\[
h_{obs}^k = \begin{cases}
\bar{p}(s^k) - p(x, y, s^{k+1}) & \text{if } (x, y) \in C^{k+1} \\
0 & \text{else.}
\end{cases}
\]
Variational assimilation for atmospheric layer motion tracking (Papadakis 07, Corpetti et al. Tellus 09)

Example of pressure differences image observations h^k_{obs}
Variational assimilation for atmospheric layer motion tracking (Papadakis 07, Corpetti et al. Tellus 09)

Dynamical model: simplified divergence and vorticity multi-layer shallow water model

\[
\begin{cases}
\omega_t^k + \mathbf{v}^k \cdot \nabla \omega^k + (\omega^k + f\phi)D^k - \nu_T \Delta \omega^k = \nu_1(D^k) \\
D_t^k + \mathbf{v}^k \cdot \nabla D^k + (D^k)^2 - \nu_T \Delta D^k = \nu_2(D^k, h^k)
\end{cases}
\]

Motion field from Biot Savart law

\[
\mathbf{v}^k = \nabla_{\perp} G * \omega^k + \nabla G * D^k + \mathbf{v}_\text{sol}^k + \mathbf{v}_\text{irr}^k + \mathbf{v}_\text{har}^k \\
= \left[\nabla_{\perp} G*, \nabla G* \right]_{\mathbb{H}_G} \begin{bmatrix} \omega^k \\ D^k \end{bmatrix} \text{ state variable } \mathbf{x} + \mathbf{v}_\text{har}^k
\]
Variational assimilation for atmospheric layer motion tracking (Papadakis 07, Corpetti et al. Tellus 09)

Observations: optical-flow constraint equation (OFCE)

- Shallow water mass conservation

\[
\frac{\partial h^k_{\text{obs}}}{\partial t} + \nabla h^k_{\text{obs}} \cdot \mathbf{v}^k + h^k_{\text{obs}} \text{div} \mathbf{v}^k \approx 0
\]

- Constant field \(\mathbf{v}^k \) within a spatial neighborhood

\((K_{\delta x} : \text{Gaussian kernel}) \)

\[
K_{\delta x} \ast \left(\frac{\partial h^k_{\text{obs}}}{\partial t} + \nabla h^k_{\text{obs}} \cdot \mathbf{v}^k + h^k_{\text{obs}} \text{div} \mathbf{v}^k \right) \approx 0,
\]

i.e. observation operator definition \(\mathbf{y} = \mathbb{H}(\mathbf{x}) \) with \(\mathbf{v}^k = \mathbb{H}_G \mathbf{x} \)

(\(\mathbf{x} \) is vorticity and divergence) :

\[
\begin{align*}
\mathbf{y} &= K_{\delta x} \ast \frac{\partial h^k_{\text{obs}}}{\partial t} \\
\mathbb{H} &= - (K_{\delta x} \ast \nabla h^k_{\text{obs}})^T \mathbb{H}_G - (K_{\delta x} \ast h^k_{\text{obs}}) [1 \ 0]
\end{align*}
\]
Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of intermediate layer)

comparison with frame-to-frame motion estimation (vorticity & divergence)
Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of lower layer)

estimates (wind, vorticity & divergence of higher layer)
Real sequence: vince (1/4)

- Cyclone (9th October 2005)
- Infrared data
- Sequence of 116 images
Real sequence: vince (2/4)

- Cyclone (9th October 2005)
- Visible data
- Sequence of 116 images
Real sequence: vince (3/4)

- Cyclone (9th october 2005)
- Velocities obtained with the visible channel superimposed to IR data
- Sequence of 116 images
Real sequence: vince (4/4)

- Comparison with fluid dedicated optical-flow estimator (without temporal consistency)

Assimilated vorticity

No temporal consistency
Data assimilation

Stochastic filtering
- Recursive technique
- Probability distribution
- Adequate stochastic formulation of the dynamics
- Appropriate noise modeling

Variational assimilation
- Deterministic batch framework
- Adapted to state space of great dimension
- Require to built the adjoint of the tangent linear dynamics
- Intrinsic linearization
Conclusions

What did we do?
- Explorations of tracking / assimilation techniques for time resolved flow images
- Very good performances for direct methods
- Process for “learning” dynamics from image data
- Specification of dynamics under uncertainty

But how far can we go?
- Experiments mainly on 2D or 2D 1/2 flows
- Necessity to go toward 3D and more complex dynamics
- May have big potential applications for geo-physical applications