Fluid flows analysis from image sequences

E. Memin

Fluminance

Journée Traitement d'Images Insa Rouen 9 avril 2015

Fluid motion image analysis

Observation and analysis of flows from image sequences

- Environmental sciences (surveillance, forecasting, analysis of geophysical fluid)
- Hydrodynamic, aeronautic (turbulent wakes)
- Life sciences (bio-fluids)

Generic image analysis approaches inappropriate

Goals

Propose tools and models for the measurement, the analysis and the control of flows

Fluid motion image analysis

Observation and analysis of flows from image sequences

- Environmental sciences (surveillance, forecasting, analysis of geophysical fluid)
- Hydrodynamic, aeronautic (turbulent wakes)
- Life sciences (bio-fluids)

Generic image analysis approaches inappropriate

Goals

Propose tools and models for the measurement, the analysis and the control of flows

Objective

Objective

 Explore techniques to extract characteristic features of fluid flows along time

Axes of work

- Estimation of fluid flow velocity descriptors (reduced parametric or non parametric representations of the flow)
- Tracking of salient fluid flows structures
- Characterization of reduced flow description

Fluid flows velocity estimation

Motion estimation problem

- Estimate $v: \Omega \subset \mathbb{R}^2 \to v(x) = (u_x(x), u_v(x))^\top$
- From $I: \Omega \times [0,T] \rightarrow I(x,t)$

Hypothesis

- Motion related to the photometric variations
- Motion field is spatially smooth

Methods

- Discrete correlations
- Differential techniques

Correlation techniques

Principle

$$v(x) = \arg\min_{v \in \{-U,...,U\} \times \{-V,...,V\}} \sum_{r \in \mathcal{W}(x)} C(I_2(r+v), I_1(r))$$

- $lue{\mathcal{C}}$: squared difference or correlation function
- v: discrete state space and rough spatial parameterization

Pro and Cons

- Fast (with FFT) local techniques
- Prone to erroneous spatial variabilities
- No spatial propagation of errors
- Difficult coupling with physical constraints
- Require non ambigous photometric patterns
- Large scale measurements in practice

Principle

$$v(x) = \arg\min \int_{\Omega} \left\{ \left(\frac{dI}{dt} + f(I, v) \right)^2 + \lambda \left(g(\partial_{x^i y^j}^{i+j} u_x, \partial_{x^i y^j}^{i+j} u_y) \right) \right\} dx$$

■ Functional gradient discretized (finite elements or finite differences)

Pro and Cons

- More general
- Theoretically finer spatial scales
- Propagation of errors
- Easy coupling with physical constraints

Generic fluid motion estimator [Corpetti et al. PAMI 02, Yuan et al. JMIV 07]

- Data model: $\int_{\Omega} (\frac{dI}{dt})^2 dx$
- Smoothing function: $\int_{\Omega} (\|\nabla \text{curl} v\|^2 + \|\nabla \text{div} v\|^2) dx$
- Mimetic finite differences

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: $\int_{\Omega} \left(\frac{dI}{dt} + I \operatorname{div} v\right)^2 dx$
- Smoothing function: $\int_{\Omega} (\|\nabla \operatorname{curl} v\|^2 + \|\nabla \operatorname{div} v\|^2) dx$

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: $\int_{\Omega} \left(\frac{dI}{dt} + I \operatorname{div} v\right)^2 dx$
- Smoothing function: $\int_{\Omega} (\|\nabla \operatorname{curl} v\|^2 + \|\nabla \operatorname{div} v\|^2) dx$

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

- Data model: $\int_{\Omega} (\frac{dI}{dt} + I \operatorname{div} v)^2 dx$
- Smoothing function: $\int_{\Omega} (\|\nabla \operatorname{curl} v\|^2 + \|\nabla \operatorname{div} v\|^2) dx$

Schlieren motion estimator [Arnaud et al. ECCV 06]

- Data model: $\int_{\Omega} \left[\frac{dI}{dt} + \frac{1}{2} I(\partial_x u_y + \partial_y u_x) \right]^2 dx$
- Smoothing function: $\int_{\Omega} \|\nabla \operatorname{curl} v\|^2 dx$
- Additional constraint $\text{div} v \simeq 0$

Atmospheric motion layers estimator [Papadakis et al. TGRS 07]

- Data model: $\sum_{k} \int_{\Omega} \left[\frac{dh^{k}}{dt} + h^{k} \operatorname{div} v_{xy}^{k} g(\rho^{k} u_{z}^{k} \rho^{k+1} u_{z}^{k+1}) \right]^{2} dx$
- Smoothing function:

$$\sum_{k} \int_{\Omega} (\|\nabla \operatorname{curl} v_{xy}^{k}\|^{2} + \|\nabla \operatorname{div} v_{xy}^{k}\|^{2} + \|\nabla u_{z}^{k}\|^{2}) dx$$

Top of cloud pressure layers

Wind fields

Vert. wind. higher layer

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

- Data model: $\int_{\Omega} (\nabla I^t v^{\theta} + \partial_t I)^2 dx$
- Dedicated parametric representation:

$$v^{ heta}(x) = \sum_{i} \gamma_{i}^{so} \mathbf{\nabla}^{\perp} g_{\sigma}(x - x_{i}^{so}) + \sum_{i} \gamma_{j}^{ir} \mathbf{\nabla} g_{\sigma}(x - x_{j}^{ir})$$

particles

velocity

vorticity

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

- Data model: $\int_{\Omega} (\nabla I^t v^{\theta} + \partial_t I)^2 dx$
- Dedicated parametric representation:

$$v^{ heta}(x) = \sum_{i} \gamma_{i}^{so} \mathbf{\nabla}^{\perp} g_{\sigma}(x - x_{i}^{so}) + \sum_{i} \gamma_{j}^{ir} \mathbf{\nabla} g_{\sigma}(x - x_{j}^{ir})$$

#1

#2

#3

Real experiments, wake flow at Re 3900 [Derrian et al. SSVM 11]

Fluid Motion estimation

Optical-flow versus PIV

- Results of similar quality on noise free particle images of 2D flow
- Physical constraints and dense representation
- No post processing

Fluid Motion estimation

Optical-flow versus PIV

- Results of similar quality on noise free particle images of 2D flow
- Physical constraints and dense representation
- No post processing

Common drawbacks

- No velocity measurements of the small scales
- No dynamical consistancy
- Difficult tuning of the smoothing parameter

Tracking of flow representations

Exploration of 2 methodological frameworks

Stochastic filtering

- Only adapted to reduced descriptors
- Recursive probabilistic frameworks
- Estimation of error covariance

Variational assimilation

- Well suited to high dimensional features
- Deterministic frameworks
- Batch processing

Stochastic filtering in a non linear setting

Principle

- Given $d\mathbf{x}_t = \mathbf{M}(\mathbf{x}_t)dt + \sigma(t)d\mathbf{B}_t$ and $\mathbf{y}_k = \mathbf{H}(\mathbf{x}_k) + \boldsymbol{\gamma}_k$
- Estimate the pdf $p(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) = p(\mathbf{x}_{0:k-1}|\mathbf{y}_{1:k-1}) \frac{p(\mathbf{y}_k|\mathbf{x}_{t=k})p(\mathbf{x}_{t=k}|\mathbf{x}_{k-1})}{p(\mathbf{y}_k|\mathbf{y}_{1:k-1})}$

Gaussian linear model: Kalman Filtering

$$\begin{split} & \mathbb{E}(\mathbf{x}_k|\mathbf{y}_{1:k}) = \mathbf{x}_k^a = \mathbf{x}_{k|k-1} + \mathbf{K}(\mathbf{y}_t - \mathbf{H}\mathbf{x}_{k|k-1}), \\ & \mathbf{K} = \mathbf{\Sigma}_{k|k-1}\mathbf{H}^T(\mathbf{H}\mathbf{\Sigma}_{k|k-1}\mathbf{H}^T + \mathbf{R})^{-1} \\ & \mathbb{E}((\mathbf{x}_k - \mathbf{x}_k^a)(\mathbf{x}_k - \mathbf{x}_k^a)^T|\mathbf{y}_{1:k}) = \mathbf{P}_k^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{\Sigma}_{k|k-1} \end{split}$$

Non Linear dynamics, linear measure: Ensemble Kalman Filtering

Kalman updates computed from a set of samples $\mathbf{x}_t^{(i)},\;i=1,\ldots,N$

Particle Filter

Non-linear dynamics and observations

- $p(\mathbf{x}_k|\mathbf{z}_{1:k}) \simeq \sum_i w_k^{(i)} \delta_{\mathbf{x}_k^{(i)}}$
- lacksquare prediction step (importance distribution sampling π)

$$\mathbf{x}_k^{(i)} \sim \pi(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) = \pi(\mathbf{x}_{0:k-1}|\mathbf{y}_{1:k-1})\pi(\mathbf{x}_k|\mathbf{y}_{1:k},\mathbf{x}_{0:k-1})$$

correction step

$$w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{y}_k|\mathbf{x}_k^{(i)})p(\mathbf{x}_k^{(i)}|\mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)}|\mathbf{x}_{0:k-1}^{(i)},\mathbf{y}_{1:k})}$$

Ensemble Kalman filter extension

Importance distribution

Bootstrap filter

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{0:k-1}^{(i)},\mathbf{y}_{1:t}) = p(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(i)}) \Rightarrow w_{k}^{(i)} \propto w_{k-1}^{(i)} p(\mathbf{y}_{k}|\mathbf{x}_{k}^{(i)})$$

- ⇒ strong limitation in high dimensional space
- Ensemble Kalman proposal distribution (Papadakis et al. Tellus 10)

$$\pi(x_{k}|x_{0:k-1}^{(i)},\mathbf{y}_{1:k}) = p(x_{k}|x_{k-1}^{(i)},\mathbf{y}_{k}) \approx \mathcal{N}(x_{k}^{a},(\mathbb{I} - \mathbf{K}^{e}\mathbf{H})\mathbf{\Sigma}_{k|k-1}^{e})$$

$$w_{k}^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{y}_{k}|\mathbf{x}_{k}^{(i)})p(\mathbf{x}_{k}^{(i)}|\mathbf{x}_{k-1}^{(i)})}{\mathcal{N}\left(\mathbf{x}_{k}^{(i)} - x_{k}^{a};0,\mathbf{P}_{k}^{a}\right)}$$

where with linear observation operator

$$(N-1)\mathbf{P}_{k}^{a} = \mathbf{x}_{k}^{f}\mathbf{x}_{k}^{f^{T}} - \mathbf{x}_{k}^{f}\mathbf{x}_{k}^{f^{T}}\mathbf{H}^{T}(\mathbf{H}\mathbf{x}_{k}^{f}\mathbf{x}_{k}^{f^{T}}\mathbf{H}^{T} + \tilde{\mathbf{R}})^{-1}\mathbf{H}\mathbf{x}_{k}^{f}\mathbf{x}_{k}^{f^{T}}$$

Ensemble Kalman filter extension

Importance distribution

Bootstrap filter

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{0:k-1}^{(i)},\mathbf{y}_{1:t}) = p(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(i)}) \Rightarrow w_{k}^{(i)} \propto w_{k-1}^{(i)} p(\mathbf{y}_{k}|\mathbf{x}_{k}^{(i)})$$

- ⇒ strong limitation in high dimensional space
- Ensemble Kalman proposal distribution (Papadakis et al. Tellus 10)

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{0:k-1}^{(i)},\mathbf{y}_{1:k}) = p(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(i)},\mathbf{y}_{k}) \approx \mathcal{N}(\mathbf{x}_{k}^{a},(\mathbb{I} - \mathbf{K}^{e}\mathbf{H})\mathbf{\Sigma}_{k|k-1}^{e})$$

$$w_{k}^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{y}_{k}|\mathbf{x}_{k}^{(i)})p(\mathbf{x}_{k}^{(i)}|\mathbf{x}_{k-1}^{(i)})}{\mathcal{N}\left(\mathbf{x}_{k}^{(i)} - \mathbf{x}_{k}^{a};0,\mathbf{P}_{k}^{a}\right)}$$

with nonlinear observation operator (Beyou et al. Tellus 13)

$$(N-1)\mathbf{P}_{\nu}^{a} = \mathbf{x}_{\nu}^{f}\mathbf{x}_{\nu}^{f} - \mathbf{x}_{\nu}^{f}\mathbf{H}(\mathbf{x}_{\nu}^{f})^{T}(\mathbf{H}(\mathbf{x}_{\nu}^{f})\mathbf{H}(\mathbf{x}_{\nu}^{f})^{T} + \tilde{\mathbf{R}})^{-1}\mathbf{H}(\mathbf{x}_{\nu}^{f})\mathbf{x}_{\nu}^{f}$$

Vorticity recovering from image data

Experiments: 2D velocity-vorticity

Dynamics

$$d\xi + \nabla \xi \cdot \mathbf{w} dt = \frac{1}{Re} \Delta \xi dt + \sigma_{Q} dW,$$

dW isotropic Gaussian field

$$Q(\mathbf{r},\tau) = \mathbb{E}(dW(\mathbf{x},t)dW(\mathbf{x}+\mathbf{r},t+\tau)) = g_{\lambda}(\mathbf{r})dt\delta(\tau),$$

$$\sigma_{\scriptscriptstyle Q} = 0.1 \ \sigma_{\scriptscriptstyle B} = 1 \quad \sigma_{\scriptscriptstyle Q} = 0.1 \ \sigma_{\scriptscriptstyle B} = 0.5 \quad \sigma_{\scriptscriptstyle Q} = 0.1 \ \sigma_{\scriptscriptstyle B} = 0.1$$

$$\sigma_{\scriptscriptstyle Q}=0.1\,\,\sigma_{\scriptscriptstyle B}=0.1$$

Vorticity recovering from image data

Filtering system

Velocity-vorticity stochastic formulation

$$d\xi + \nabla \xi \cdot \mathbf{w} dt = \frac{1}{Re} \Delta \xi dt + \sigma_Q dW,$$

- Measurements
- 1) Local motion mesurements

$$\mathbf{y}_k = \mathbf{w} + \boldsymbol{\gamma}_k$$

2) Image reconstruction error

$$I(x,k) = I(x + \mathbf{d}_{k+1}(\mathbf{x}), k+1) + \eta_k$$

Results: 2D DNS sequence

passive scalar

vorticity

Results: 2D DNS sequence

Results: 2D DNS sequence

Filtering results (initialization with local motion estimates)

Results: Oceanic SST images

Curve tracking

- Objective: track the evolution of a 2D closed curve in the image domain
- Difficulty: evolution model not accessible (projection of a moving 3D curve)
- stochastic dynamics infered from the data with a low dimensional noise

Curve tracking (Avenel et al. JMIV 14)

 \blacksquare Curve described through an implicit function φ

$$C_t = \{\mathbf{x} | \varphi(\mathbf{x}, t) = 0\}$$

- \Rightarrow The curve is specified as the zero level set of φ
- Curve dynamics driven by the data and low dimensional noise

$$d\mathcal{C}_t = w_n \mathbf{n} dt + \sigma_1 \mathbf{n} dB_t^n + \sigma_2 \mathbf{n}^{\perp} dB_t^{\tau}$$

 Deformation field: extension to the whole plane of the curve evolution

$$d\mathbf{X}_{t} = w_{n}^{*} \frac{\nabla \varphi}{|\nabla \varphi|} dt + \sigma_{n} \frac{\nabla \varphi}{|\nabla \varphi|} dB_{t}^{n} + \sigma_{\tau} \frac{\nabla \varphi^{\perp}}{|\nabla \varphi|} dB_{t}^{\tau}$$

• Surface φ transported by the curve deformation field:

$$d\varphi(t,x)=0$$

 \Rightarrow Require the computation of $d\varphi(X_t, t)$

Differential of the implicit surface

• Surface φ is necessarily a stochastic process For a fixed point y, φ solution of

$$d\varphi_t(y) = b(y,t)dt + f(y,t)dB_{n,t} + g(y,t)dB_{\tau,t},$$

■ Use of Ito-Wentzell formula (differential of $\varphi \circ X_t$)

$$d\varphi(x,t) = d\varphi_t(x) + \nabla \varphi^T dX_t + \frac{1}{2} \sum_{i,j} d \left\langle X_t^i, X_t^j \right\rangle \frac{\partial^2 \varphi}{\partial x_i \partial x_j}$$
$$+ \sum_i d \left\langle \frac{\partial \varphi}{\partial x_i}, X_t^i \right\rangle_t = 0$$

Differential of the implicit surface

 \blacksquare Surface φ is necessarily a stochastic process For a fixed point $y,\,\varphi$ solution of

$$d\varphi_t(y) = b(y,t)dt + f(y,t)dB_{n,t} + g(y,t)dB_{\tau,t},$$

■ Use of Ito-Wentzell formula (differential of $\varphi \circ X_t$)

$$d\varphi_{t}(x) = -\nabla \varphi^{T} w_{n}^{*} dt - \frac{\sigma_{\tau}^{2} dt}{2} (\Delta \varphi - \frac{1}{|\nabla \varphi|^{2}} \nabla \varphi^{T} \nabla^{2} \varphi \nabla \varphi)$$

+
$$\frac{\sigma_{n}^{2} dt}{2} \left(\frac{1}{|\nabla \varphi|^{2}} \nabla \varphi^{T} \nabla^{2} \varphi \nabla \varphi \right) - \sigma_{n} |\nabla \varphi| dB_{n,t},$$

Definition of the transportation motion field

- Infer directly the velocity from each particle displacements
- Adjunction of a new vectorial level set ψ representative of the grid coordinates at the previous time transported by the curve

$$\psi^k(x,k-1)=x$$

 $\psi^k(x,t) \Rightarrow$ coordinates of point x at time k-1 for $t \in [k-1,k]$

lacksquare Ito-Wentzell formula for the differential of ψ^k

$$\begin{split} d\psi_t^i(x) &= -(\nabla \psi_t^i)^T v_n^* dt \\ &- (\nabla \psi_t^i)^T (\frac{\nabla \varphi}{|\nabla \varphi|} \sigma_n dB_{n,t} + \frac{\nabla \varphi^\perp}{|\nabla \varphi|} \sigma_\tau dB_{\tau,t}) \\ &- \frac{A_i dt}{2|\nabla \varphi|^2} + \frac{\sigma_n F_i dt}{|\nabla \varphi|} + \frac{\sigma_\tau G_i dt}{|\nabla \varphi|}. \end{split}$$

Definition of the transportation motion field

■ Transportation motion field

$$v^*(x,t)dt = \frac{1}{\Delta t}(x - E(\psi^k(x,k)|\mathcal{C}_k)), \ \forall t \in [k,k+1],$$

Considering the particle approximation this velocity field is computed as:

$$v^*(x,t)dt = \frac{1}{\Delta t} \left(x - \frac{1}{N} \sum_{i=1}^{N} w^{(i)} \psi^{k,(i)}(x,k) \right), \tag{1}$$

for $t \in [k, k+1]$, with $\psi^{k,(i)}$ auxiliary function associated to particle $\varphi_k^{(i)}$ and $w_k^{(i)}$ its importance weight.

Likelihood definition

Likelihood that depends on the similarity between photometric distributions inside the curve at times t=0 and t=k.

$$p(\mathbf{y}_t|\mathcal{C}_t^{(i)}) \propto \exp\{-\lambda d(h_0, h_k^{(i)})\},\tag{2}$$

d: Hellinger distance between h_0 the reference interior histogram at time 0 and $h_k^{(i)}$ the histogram associated to the *i*-th surface sample at time k

$$d(p,q) = \left(1 - \sum_{j \in X} \sqrt{p(j)q(j)}\right)^{1/2}.$$

Results

Results

Results

Variational assimilation

Principle

■ Initial condition + dynamical law

$$\frac{\partial \mathcal{X}}{\partial t}(x,t) + \mathbb{M}(\mathcal{X}(x,t)) = \rho(x,t)$$
 (3)

$$\mathcal{X}(x,t_0) = \mathcal{X}_0(x) + \epsilon_n(x), \tag{4}$$

+ observations

$$\mathbf{\mathcal{Y}}(x,t) = \mathbb{H}(\mathbf{\mathcal{X}}(x,t)) + \epsilon_o(x,t)$$
 (5)

 \mathcal{X}_0 initial condition (t_0) and $(\mathbf{p}(\mathbf{t}), \epsilon_{\mathbf{n}})$ control variables.

■ Minimize w.r.t. (p, ϵ_n)

$$J(p,\epsilon_n) = \int_{t_0}^{t_f} \| \mathcal{Y}(x,t) - \mathbb{H}(\mathcal{X}(x,t)) \|_R^2 + \int_{t_0}^{t_f} \| p(x,t) \|_Q^2 + \| \epsilon_n \|_B^2$$

Variational assimilation

Functional gradient

Introduction of an adjoint variable

$$\left\{ egin{aligned} &-rac{\partial oldsymbol{\lambda}}{\partial t}(t) + (\partial_{oldsymbol{\mathcal{X}}}\mathbb{M})^*oldsymbol{\lambda}(t) = (\partial_{oldsymbol{\mathcal{X}}}\mathbb{H})^*R^{-1}(oldsymbol{\mathcal{Y}} - \mathbb{H}(oldsymbol{\mathcal{X}}))(t) \ &oldsymbol{\lambda}(t_f) = 0, \end{aligned}
ight.$$

Functional gradient

$$\begin{cases} \partial_{p} J = Q^{-1}(\partial_{t} \mathcal{X} + \mathbb{M}(\mathcal{X})) - \lambda, \\ \partial_{\epsilon_{n}} J = \lambda(t_{0}) + B^{-1}(\mathcal{X}(t_{0}) - X_{0}) \end{cases}$$

Context: multi-layer imagery

Sparse images (clouds), inaccurate vertical coordinates

Sparse images $(h_{obs}^1, h_{obs}^2, h_{obs}^3)(t)$ for a 3 layer decomposition

Layer surfaces s^k

- \blacksquare cloud classified in k th layer
- \mathbf{s}^k defined by clouds altitude in

Sparse pressure differences h_{obs}^k

$$h_{obs}^{k} = \left\{ \begin{array}{ll} \overline{p}(s^{k}) - p(x, y, s^{k+1}) & \textit{if } (x, y) \in C^{k+1} \\ 0 & \textit{else}. \end{array} \right.$$

Context: multi-layer imagery

Sparse images (clouds), inaccurate vertical coordinates

FUMETSAT

Top of cloud pressure p Top of cloud classification $\{C^k\}$

Sparse images $(h_{obs}^1, h_{obs}^2, h_{obs}^3)(t)$ for a 3 layer decomposition

Layer surfaces s^k

- \blacksquare cloud classified in k-th layer
- $= s^k$ defined by clouds altitude in

Sparse pressure differences h_{obs}^{k}

$$h_{obs}^{k} = \left\{ \begin{array}{ll} \overline{p}(s^{k}) - p(x, y, s^{k+1}) & \text{ if } (x, y) \in C^{k+1} \\ 0 & \text{ else.} \end{array} \right.$$

Example of pressure differences image observations h_{obs}^k

Dynamical model: simplified divergence and vorticity multi-layer shallow water model

$$\left\{ \begin{array}{l} \boldsymbol{\omega}_t^k + \mathbf{v}^k \cdot \nabla \boldsymbol{\omega}^k + (\boldsymbol{\omega}^k + f^{\phi}) D^k - \nu_{\mathcal{T}} \Delta \boldsymbol{\omega}^k = \nu_1(D^k) \\ D_t^k + \mathbf{v}^k \cdot \nabla D^k + (D^k)^2 - \nu_{\mathcal{T}} \Delta D^k = \nu_2(D^k, h^k) \end{array} \right. .$$

Motion field from Biot Savart law

$$\mathbf{v}^{k} = \underbrace{\nabla^{\perp} G * \omega^{k}}_{\mathbf{v}^{k}_{sol}} + \underbrace{\nabla G * D^{k}}_{\mathbf{v}^{k}_{irr}} + \mathbf{v}^{k}_{har}$$

$$= \underbrace{\left[\nabla^{\perp} G *, \nabla G *\right]}_{\mathbb{H}_{G}} \underbrace{\begin{bmatrix}\omega^{k} \\ D^{k}\end{bmatrix}}_{\text{state variable } \boldsymbol{\mathcal{X}}} + \mathbf{v}^{k}_{har}$$

Observations: optical-flow constraint equation (OFCE)

■ Shallow water mass conservation

$$\frac{\partial h_{obs}^k}{\partial t} + \nabla h_{obs}^k \cdot v^k + h_{obs}^k \mathrm{div} v^k \approx 0$$

Constant field v^k within a spatial neighborhood $(K_{\delta_v}: \text{Gaussian kernel})$

$$\mathcal{K}_{\delta_x} * \left(rac{\partial h_{obs}^k}{\partial t} + \nabla h_{obs}^k \cdot \mathbf{v}^k + h_{obs}^k \mathrm{div} \mathbf{v}^k
ight) pprox 0,$$

i.e. observation operator definition $\mathcal{Y} = \mathbb{H}(\mathcal{X})$ with $\mathbf{v}^k = \mathbb{H}_G \mathcal{X}$ (\mathcal{X} is vorticity and divergence) :

$$\left\{ \begin{array}{ll} \boldsymbol{\mathcal{Y}} &= K_{\delta_{x}} * \frac{\partial h_{obs}^{\kappa}}{\partial t} \\ \mathbb{H} &= -\left(K_{\delta_{x}} * \nabla h_{obs}^{k}\right)^{T} \mathbb{H}_{G} - \left(K_{\delta_{x}} * h_{obs}^{k}\right) [1 \ 0] \end{array} \right.$$

Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of intermediate layer)

comparison with frame-to-frame motion estimation (vorticity & divergence)

Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of higher layer)

Real sequence: vince (1/4)

- Cyclone (9th october 2005)
- Infrared data
- Sequence of 116 images

Real sequence: vince (2/4)

- Cyclone (9th october 2005)
- Visible data
- Sequence of 116 images

Real sequence: vince (3/4)

- Cyclone (9th october 2005)
- Velocities obtained with the visible channel superimposed to IR data
- Sequence of 116 images

Real sequence: vince (4/4)

 Comparison with fluid dedicated optical-flow estimator (without temporal consistency)

Data assimilation

Stochastic filtering

- Recursive technique
- Probability distribution
- Adequate stochastic formulation of the dynamics
- Appropriate noise modeling

Variational assimilation

- Deterministic batch framework
- Adapted to state space of great dimension
- Require to built the adjoint of the tangent linear dynamics
- Intrinsic linearization

Conclusions

What did we do?

- Explorations of tracking / assimilation techniques for time resolved flow images
- Very good performances for direct methods
- Process for "learning" dynamics from image data
- Specification of dynamics under uncertainty

But how far can we go?

- Experiments mainly on 2D or 2D 1/2 flows
- Necessity to go toward 3D and more complex dynamics
- May have big potential applications for geo-physical applications