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Fluid motion image analysis

Observation and analysis of flows from image sequences

Environmental sciences (surveillance, forecasting, analysis of
geophysical fluid)

Hydrodynamic, aeronautic (turbulent wakes)

Life sciences (bio-fluids)

Generic image analysis approaches inappropriate

Goals

Propose tools and models for the measurement, the analysis and
the control of flows
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Objective

Objective

Explore techniques to extract characteristic features of fluid
flows along time

Axes of work

Estimation of fluid flow velocity descriptors (reduced
parametric or non parametric representations of the flow)

Tracking of salient fluid flows structures

Characterization of reduced flow description



Fluid flows velocity estimation

Motion estimation problem

Estimate v : Ω ⊂ R2 → v(x) =
(
ux(x), uy (x))>

From I : Ω× [0,T ]→ I (x , t)

Hypothesis

Motion related to the photometric variations

Motion field is spatially smooth

Methods

Discrete correlations

Differential techniques



Correlation techniques

Principle

v(x) = arg min
v∈{−U,...,U}×{−V ,...,V}

∑
r∈W(x)

C(I2(r + v), I1(r))

C: squared difference or correlation function

v : discrete state space and rough spatial parameterization

Pro and Cons

Fast (with FFT) local techniques

Prone to erroneous spatial variabilities

No spatial propagation of errors

Difficult coupling with physical constraints

Require non ambigous photometric patterns

Large scale measurements in practice



Differential techniques

Principle

v(x) = arg min

∫
Ω

{
(
dI

dt
+ f (I , v))2 + λ

(
g(∂ i+j

x iy jux , ∂
i+j
x iy juy )

)}
dx

Functional gradient discretized (finite elements or finite differences)

Pro and Cons

More general

Theoretically finer spatial scales

Propagation of errors

Easy coupling with physical constraints



Differential techniques

Generic fluid motion estimator [Corpetti et al. PAMI 02, Yuan et al.
JMIV 07]

Data model:

∫
Ω

(
dI

dt
)2dx

Smoothing function:

∫
Ω

(‖∇curlv‖2 + ‖∇divv‖2)dx

Mimetic finite differences



Differential techniques

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

Data model:

∫
Ω

(
dI

dt
+ Idivv)2dx

Smoothing function:

∫
Ω

(‖∇curlv‖2 + ‖∇divv‖2)dx

Airplane wing tip’s Vortex
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Differential techniques

Transmittance imagery fluid motion estimator [Corpetti et al. PAMI 02]

Data model:

∫
Ω

(
dI

dt
+ Idivv)2dx

Smoothing function:

∫
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(‖∇curlv‖2 + ‖∇divv‖2)dx
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Differential techniques

Schlieren motion estimator [Arnaud et al. ECCV 06]

Data model:

∫
Ω

[
dI

dt
+

1

2
I (∂xuy + ∂yux)]2dx

Smoothing function:

∫
Ω

‖∇curlv‖2dx

Additional constraint divv ' 0



Differential techniques

Atmospheric motion layers estimator [Papadakis et al. TGRS 07]

Data model:
∑
k

∫
Ω

[
dhk

dt
+ hkdivvk

xy − g(ρkukz − ρk+1uk+1
z )]2dx

Smoothing function:∑
k

∫
Ω

(‖∇curlvk
xy‖2 + ‖∇divvk

xy‖2 + ‖∇ukz ‖2)dx

Top of cloud pressure layers Wind fields Vert. wind. higher layer



Differential techniques

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

Data model:

∫
Ω

(∇I tvθ + ∂t I )
2dx

Dedicated parametric representation:

vθ(x) =
∑
i

γsoi ∇⊥gσ(x − x soi ) +
∑
j

γ irj ∇gσ(x − x irj )

particles velocity vorticity



Differential techniques

Low order parametric fluid motion estimator [Cuzol et al. IJCV 07]

Data model:

∫
Ω

(∇I tvθ + ∂t I )
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vθ(x) =
∑
i

γsoi ∇⊥gσ(x − x soi ) +
∑
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γ irj ∇gσ(x − x irj )

#1 #2 #3



Differential techniques

Real experiments, wake flow at Re 3900 [Derrian et al. SSVM 11]



Fluid Motion estimation

Optical-flow versus PIV

Results of similar quality on noise free particle images of 2D flow

Physical constraints and dense representation

No post processing

Black DNS; Red Corpetti-02; Blue Lavision (Davis 7.2); Green Yuan-07



Fluid Motion estimation

Optical-flow versus PIV

Results of similar quality on noise free particle images of 2D flow

Physical constraints and dense representation

No post processing

Common drawbacks

No velocity measurements of the small scales

No dynamical consistancy

Difficult tuning of the smoothing parameter



Tracking of flow representations

Exploration of 2 methodological frameworks

Stochastic filtering

Only adapted to reduced descriptors

Recursive probabilistic frameworks

Estimation of error covariance

Variational assimilation

Well suited to high dimensional features

Deterministic frameworks

Batch processing



Stochastic filtering in a non linear setting

Principle

Given dxt = M(xt)dt + σ(t)dBt and yk = H(xk) + γk

Estimate the pdf p(x0:k |y1:k) = p(x0:k−1|y1:k−1) p(yk |xt=k )p(xt=k |xk−1)
p(yk |y1:k−1)

Gaussian linear model: Kalman Filtering

E(xk |y1:k) = xak = xk|k−1 + K(yt −Hxk|k−1),

K = Σk|k−1HT (HΣk|k−1HT + R)−1

E((xk − xak)(xk − xak)T |y1:k) = Pa
k = (I−KH)Σk|k−1

Non Linear dynamics, linear measure: Ensemble Kalman Filtering

Kalman updates computed from a set of samples x
(i)
t , i = 1, . . . ,N



Particle Filter

Non-linear dynamics and observations

p(xk |z1:k) '
∑

i w
(i)
k δ

x
(i)
k

prediction step (importance distribution sampling π)

x
(i)
k ∼ π(x0:k |y1:k) = π(x0:k−1|y1:k−1)π(xk |y1:k , x0:k−1)

correction step

w
(i)
k ∝ w

(i)
k−1

p(yk |x
(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1, y1:k)



Ensemble Kalman filter extension

Importance distribution

Bootstrap filter

π(xk |x(i)
0:k−1, y1:t) = p(xk |x(i)

k−1)⇒ w
(i)
k ∝ w

(i)
k−1p(yk |x(i)

k )

⇒ strong limitation in high dimensional space

Ensemble Kalman proposal distribution (Papadakis et al. Tellus 10)

π(xk |x (i)
0:k−1, y1:k) = p(xk |x (i)

k−1, yk) ≈ N (xak , (I−KeH)Σe
k|k−1)

w
(i)
k ∝ w

(i)
k−1

p(yk |x(i)
k )p(x

(i)
k |x

(i)
k−1)

N
(

x
(i)
k − xak ; 0,Pa

k

)
where with linear observation operator

(N − 1)Pa
k = xfkxfk

T − xfkxfk
T

HT (Hxfkxfk
T

HT + R̃)−1Hxfkxfk
T



Ensemble Kalman filter extension

Importance distribution

Bootstrap filter

π(xk |x(i)
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(i)
k ∝ w

(i)
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k )
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0:k−1, y1:k) = p(xk |x (i)

k−1, yk) ≈ N (xak , (I−KeH)Σe
k|k−1)

w
(i)
k ∝ w

(i)
k−1

p(yk |x(i)
k )p(x

(i)
k |x

(i)
k−1)

N
(

x
(i)
k − xak ; 0,Pa

k

)
with nonlinear observation operator (Beyou et al. Tellus 13)

(N − 1)Pa
k = xfkxfk

T− xfkH(xfk)T (H(xfk)H(xfk)T + R̃)−1H(xfk)xfk
T



Vorticity recovering from image data

Experiments: 2D velocity-vorticity

Dynamics

dξ +∇ξ ·wdt =
1

Re
∆ξdt + σQdW ,

dW isotropic Gaussian field

Q(r, τ) = E(dW (x, t)dW (x + r, t + τ)) = gλ(r)dtδ(τ),

σQ = 0.1 σB = 1 σQ = 0.1 σB = 0.5 σQ = 0.1 σB = 0.1



Vorticity recovering from image data

Filtering system

Velocity-vorticity stochastic formulation

dξ +∇ξ ·wdt =
1

Re
∆ξdt + σQdW ,

Measurements

1) Local motion mesurements

yk = w + γk

2) Image reconstruction error

I (x , k) = I (x + dk+1(x), k + 1) + ηk



Results: 2D DNS sequence

passive scalar vorticity



Results: 2D DNS sequence

RMSE vorticity Energy Spectrum



Results: 2D DNS sequence

Filtering results (initialization with local motion estimates)



Results: Oceanic SST images

SST Off the Panama istmus during El Nino southern oscillation (48 days)



Stochastic filtering for curve tracking

Curve tracking

Objective: track the evolution of a 2D closed curve in the image
domain

Difficulty: evolution model not accessible (projection of a moving
3D curve)

⇒ stochastic dynamics infered from the data with a low
dimensional noise



Stochastic filtering for curve tracking

Curve tracking (Avenel et al. JMIV 14)

Curve described through an implicit function ϕ

Ct = {x|ϕ(x, t) = 0}

⇒ The curve is specified as the zero level set of ϕ

Curve dynamics driven by the data and low dimensional noise

dCt = wnndt + σ1ndBn
t + σ2n⊥dBτt

Deformation field: extension to the whole plane of the curve
evolution

dXt = w∗n
∇ϕ

|∇ϕ|
dt + σn

∇ϕ

|∇ϕ|
dBn

t + στ
∇ϕ⊥

|∇ϕ|
dBτt

Surface ϕ transported by the curve deformation field:

dϕ(t, x) = 0

⇒ Require the computation of dϕ(X t , t)



Stochastic filtering for curve tracking

Differential of the implicit surface

Surface ϕ is necessarily a stochastic process
For a fixed point y , ϕ solution of

dϕt(y) = b(y , t)dt + f (y , t)dBn,t + g(y , t)dBτ,t ,

Use of Ito-Wentzell formula ( differential of ϕ ◦ X t)

dϕ(x , t) = dϕt(x) +∇ϕTdX t +
1

2

∑
i,j

d
〈
X i
t ,X

j
t

〉 ∂2ϕ

∂xi∂xj

+
∑
i

d

〈
∂ϕ

∂xi
,X i

t

〉
t

= 0



Stochastic filtering for curve tracking

Differential of the implicit surface

Surface ϕ is necessarily a stochastic process
For a fixed point y , ϕ solution of

dϕt(y) = b(y , t)dt + f (y , t)dBn,t + g(y , t)dBτ,t ,

Use of Ito-Wentzell formula ( differential of ϕ ◦ X t)

dϕt(x) = −∇ϕTw∗n dt −
σ2
τdt

2
(∆ϕ− 1

|∇ϕ|2
∇ϕT∇2ϕ∇ϕ)

+
σ2
ndt

2

(
1

|∇ϕ|2
∇ϕT∇2ϕ∇ϕ

)
− σn|∇ϕ|dBn,t ,



Stochastic filtering for curve tracking

Definition of the transportation motion field

Infer directly the velocity from each particle displacements

Adjunction of a new vectorial level set ψ representative of the grid
coordinates at the previous time transported by the curve

ψk(x , k − 1) = x

ψk(x , t) ⇒ coordinates of point x at time k − 1 for t ∈ [k − 1, k]

Ito-Wentzell formula for the differential of ψk

dψi
t(x) = −(∇ψi

t)
T v∗ndt

− (∇ψi
t)

T (
∇ϕ
|∇ϕ|

σndBn,t +
∇ϕ⊥

|∇ϕ|
στdBτ,t)

− Aidt

2|∇ϕ|2
+
σnFidt

|∇ϕ|
+
στGidt

|∇ϕ|
.



Stochastic filtering for curve tracking

Definition of the transportation motion field

Transportation motion field

v∗(x , t)dt =
1

∆t
(x − E (ψk(x , k)|Ck)), ∀t ∈ [k, k + 1],

Considering the particle approximation this velocity field is
computed as:

v∗(x , t)dt =
1

∆t

(
x − 1

N

N∑
i=1

w (i)ψk,(i)(x , k)

)
, (1)

for t ∈ [k , k + 1], with ψk,(i) auxiliary function associated to particle

ϕ
(i)
k and w

(i)
k its importance weight.



Stochastic filtering for curve tracking

Likelihood definition

Likelihood that depends on the similarity between photometric
distributions inside the curve at times t = 0 and t = k .

p(yt |C(i)
t ) ∝ exp{−λd(h0, h

(i)
k )}, (2)

d : Hellinger distance between h0 the reference interior histogram at time

0 and h
(i)
k the histogram associated to the i-th surface sample at time k

d(p, q) =

1−
∑
j∈X

√
p(j)q(j)

1/2

.



Stochastic filtering for curve tracking

Results

Convective cell tracking



Stochastic filtering for curve tracking

Results

Convective cell: velocity field applied



Stochastic filtering for curve tracking

Results

Convective cell: curve points trajectories



Stochastic filtering for curve tracking

Ice density



Variational assimilation

Principle

Initial condition + dynamical law

∂X
∂t

(x , t) + M(X (x , t)) = p(x , t) (3)

X (x , t0) = X 0(x) + εn(x), (4)

+ observations

Y(x , t) = H(X (x , t)) + εo(x , t) (5)

X 0 initial condition (t0) and (p(t), εn) control variables.

Minimize w.r.t. (p, εn)

J(p, εn) =

∫ tf

t0
‖Y(x , t)−H(X (x , t))‖2

R +

∫ tf

t0
‖p(x , t)‖2

Q + ‖εn‖2
B



Variational assimilation

Functional gradient

Introduction of an adjoint variable −
∂λ

∂t
(t) + (∂XM)∗λ(t) = (∂XH)∗R−1(Y −H(X ))(t)

λ(tf ) = 0,

Functional gradient{
∂pJ = Q−1(∂tX + M(X ))− λ,
∂εnJ = λ(t0) + B−1(X (t0)− X0)



Variational assimilation for atmospheric layer motion
tracking (Papadakis 07, Corpetti et al. Tellus 09)

Context: multi-layer imagery

Sparse images (clouds), inaccurate vertical coordinates

EUMETSAT EUMETSAT Sparse images (h1
obs , h

2
obs , h

3
obs )(t)

Top of cloud pressure p Top of cloud classification {Ck} for a 3 layer decomposition

Layer surfaces sk

cloud classified in k − th layer

sk defined by clouds altitude in

C k

Sparse pressure differences hk
obs

hkobs =

{
p(sk )− p(x, y, sk+1) if (x, y) ∈ Ck+1

0 else.
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Variational assimilation for atmospheric layer motion
tracking (Papadakis 07, Corpetti et al. Tellus 09)

Example of pressure differences image observations hkobs



Variational assimilation for atmospheric layer motion
tracking (Papadakis 07, Corpetti et al. Tellus 09)

Dynamical model: simplified divergence and vorticity multi-layer shallow
water model{

ωk
t + vk ·∇ωk + (ωk + f φ)Dk − νT∆ωk = ν1(Dk)

Dk
t +vk ·∇Dk + (Dk)2− νT∆Dk = ν2(Dk , hk)

.

Motion field from Biot Savart law

vk = ∇⊥G ∗ ωk︸ ︷︷ ︸
vk
sol

+∇G ∗ Dk︸ ︷︷ ︸
vk
irr

+vk
har

=
[
∇⊥G∗,∇G∗

]︸ ︷︷ ︸
HG

[
ωk

Dk

]
︸ ︷︷ ︸

state variable X

+ vk
har



Variational assimilation for atmospheric layer motion
tracking (Papadakis 07, Corpetti et al. Tellus 09)

Observations: optical-flow constraint equation (ofce)

Shallow water mass conservation

∂hkobs
∂t

+∇hkobs · vk + hkobsdivv
k ≈ 0

Constant field vk within a spatial neighborhood

(Kδx : Gaussian kernel)

Kδx ∗
(
∂hkobs
∂t

+∇hkobs · vk + hkobsdivvk

)
≈ 0,

i.e. observation operator definition Y = H(X ) with vk = HGX
(X is vorticity and divergence) :{

Y = Kδx ∗
∂hkobs
∂t

H = −
(
Kδx ∗ ∇hkobs

)T HG −
(
Kδx ∗ hkobs

)
[1 0]

Kδx ∗
(
∂hkobs
∂t

+∇hkobs · vk + hkobsdivvk

)
≈ 0,



Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of intermediate layer)

comparison with frame-to-frame motion estimation (vorticity & divergence)



Experiments on METEOSAT image sequence

estimates (wind, vorticity & divergence of lower layer)

estimates (wind, vorticity & divergence of higher layer)



Real sequence: vince (1/4)

Cyclone (9th october 2005)

Infrared data

Sequence of 116 images



Real sequence: vince (2/4)

Cyclone (9th october 2005)

Visible data

Sequence of 116 images



Real sequence: vince (3/4)

Cyclone (9th october 2005)

Velocities obtained with the visible channel superimposed to
IR data

Sequence of 116 images



Real sequence: vince (4/4)

Comparison with fluid dedicated optical-flow estimator
(without temporal consistency)

Assimilated vorticity No temporal consistency



Data assimilation

Stochastic filtering

Recursive technique

Probability distribution

Adequate stochastic formulation of the dynamics

Appropriate noise modeling

Variational assimilation

Deterministic batch framework

Adapted to state space of great dimension

Require to built the adjoint of the tangent linear dynamics

Intrinsic linearization



Conclusions

What did we do ?

Explorations of tracking / assimilation techniques for time resolved
flow images

Very good performances for direct methods

Process for “learning” dynamics from image data

Specification of dynamics under uncertainty

But how far can we go ?

Experiments mainly on 2D or 2D 1/2 flows

Necessity to go toward 3D and more complex dynamics

May have big potential applications for geo-physical applications
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