

M2NUM

Plateforme
haut-normande en Modélisation
Mathématique: applications et
simulations NUMériques pour
les énergies renouvelables,
l'éco-mobilité et l'imagerie

Image segmentation with a statistical shape prior

Caroline Petitjean

avec Arturo Mendoza Quispe

Journée Traitement d'images, 9 avril 2015

Foulonneau'04

Sans a priori

Avec a priori

Foulonneau'04

Sans a priori

Avec a priori

Outline

- Related works in prior information segmentation
 - Atlas based approaches
 - Statistical shape prior based approaches
- Manifold learning for shape set modelling
- ML-based shape prior segmentation framework
- A few results on cardiac MRI

Multi-atlas registration for image segmentation

7

Multi-atlas: recent developments

Nonlocal means label fusion

Subject selection

Patch comparison

8

Statistical shape model for image segmentation

Objective:

- learn the possible shape deformations of an object statistically from a set of training shapes
- restrict the contour deformation to the subspace of <u>familiar</u> shapes during the segmentation process
- Active Shape Models, Cootes 1995

- Leventon CVPR'00, Tsai TMI'03
 - Implicit representation

Statistical shape model for image segmentation

Example: Tsai's framework

Shapes are represented as signed distance functions

$$\mathbb{D}_{\gamma} = \varepsilon(x) \inf_{y \in \partial s} d(x, y) \text{ with } \varepsilon(x) \begin{cases} +1 & \text{if } x \in s, \\ -1 & \text{if } x \notin s \end{cases}$$

After rigid alignment:

$$\begin{split} \Phi[\mathbf{w},\mathbf{p}](x,y) &= \bar{\Phi}(\tilde{x},\tilde{y}) + \sum_{i=1}^k w_i \Phi_i(\tilde{x},\tilde{y}) \\ \text{Mean} & \text{Eigenshapes} \\ \text{shape} \end{split}$$

Statistical shape model for image segmentation

Example: Tsai's framework

$$\Phi[\mathbf{w}, \mathbf{p}](x, y) = \bar{\Phi}(\tilde{x}, \tilde{y}) + \sum_{i=1}^{k} w_i \Phi_i(\tilde{x}, \tilde{y})$$

$$E_{cv} = \int_{R^u} (I - \mu)^2 dA + \int_{R^v} (I - \nu)^2 dA$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha_{\mathbf{w}} \nabla \mathbf{w} E$$
$$\mathbf{p}^{(t+1)} = \mathbf{p}^{(t)} - \alpha_{\mathbf{p}} \nabla \mathbf{p} E$$

Problems of linear shape space

- Assumes the data lie in a linear subspace
- permissible shapes are assumed to form a multivariate Gaussian distribution

Yet: real world data sets present complex deformations

- Non linear shape statistics for image segmentation
 - introduced with kPCA in Cremers, ECCV'02
 - with manifold learning techniques: Etyngier'07, Yan'13,
 Moolan-Ferouze'14...

Outline

- Related works in prior information segmentation
 - Atlas based approaches
 - Statistical shape prior based approaches
- Manifold learning for shape set modelling
- ML-based shape prior segmentation framework
- A few results on cardiac MRI

Manifold learning

 process of recovering the <u>underlying low</u> <u>dimensional structure</u> of a manifold that is embedded in a higher-dimensional space

closely related to the notion of dimensionality

Principle of spectral ML techniques

- Compute a similarity matrix M (n x n) between n
 points (= shapes for us) of the dataset
 - Goal: to connect points that lie within a common neighbourhood.
 - k-nearest neighbour or ϵ ball

Principle of spectral ML techniques

- Compute a similarity (affinity) matrix $M(n \times n)$
- From M, compute a feature matrix F:
 - size n x n
 - symmetric
 - positive semi definite
- Spectral decomposition of F
- Keep the m smallest/largest eigenvectors

An example

Number two in MNIST database (n=500)

- Images: 20 x 20 22222222222

 $-d = 400 \rightarrow m = 2$

Outline

- Related works in prior information segmentation
 - Atlas based approaches
 - Statistical shape prior based approaches
- Manifold learning for shape set modelling
- ML-based shape prior segmentation framework
- A few results on cardiac MRI

How to use an non linear shape prior for segmentation?

How to use an non linear shape prior for segmentation?

Constrain the shape in the embedding

Moolan-Ferouze '14

- Find the shape's nearest neighbors (NN)
- The shape \hat{s} is a linear combination of its NN:

$$\hat{s} = \sum_{i=0}^{m} \theta_i s_i$$
 with $\sum_{i=0}^{m} \theta_i = 1$ and $\theta_i \ge 0, \forall i = 0, \dots, m$

$$\hat{\theta} = \arg\min d \ (s^*, \hat{s})$$

with
$$d(s^*, \hat{s}) = \sum (H(s^*) - H(\hat{s}))^2$$

How to use an non linear shape prior for segmentation?

Based on Etyngier ICCV'07 & Moolan-Ferouze MICCAI'14

How to use an non linear shape prior for segmentation?

Find the labeling L such that E(L) is minimum

Shape prior energy term

Find the labeling L such that E(L) is minimum

From \hat{s} , let's define a probability atlas

Shape prior energy term

Find the labeling L such that E(L) is minimum

From \hat{s} , let's define a probability atlas

Shape prior term: $E_{prior}(O) = -\sum_{i} \log(M(i))$ $E_{prior}(B) = -\sum_{i} \log(1 - M(i))$ Moolan-Ferouze MICCAl'14

Etotal is minimized with the mincut – maxflow algorithm [Boykov+Kolmogorov'04]

$$M(i) = \begin{cases} 1 & \text{if } \hat{s}(i) \leq 0 \\ e^{-\hat{s}(i)/\gamma_{f(i)}} & \text{if } \hat{s}(i) > 0 \end{cases}$$

Experimental results

Application: segmentation of the right ventricle in

cardiac MRI

Implementation:

(travail réalisé avec Arturo Mendoza Quispe, étudiant M2 STIM)

- Manifold learning: diffusion maps (Etyngier'07)
- Graphcut based image segmentation
- Shapes are described with signed distance maps

Experimental results

RV shape in 2D space

(intrinsic dim≈3)

Experimental results

Initializations

Final segmentations

Some perspectives with ML techniques

- Also investigated for atlas-based approaches
 - ML for atlas selection [Wolz NeuroImage'10, Cao MICCAI'11, Hoang-Duc PlosOne'13, Gao SPIE'14]

Some perspectives with ML techniques

- Also investigated for atlas-based approaches
 - ML for atlas selection [Wolz NeuroImage'10, Cao MICCAI'11, Hoang-Duc PlosOne'13, Gao SPIE'14]
 - Patch-based approaches [Shi et al MICCAI'14, Oktay et al MICCAI'14]
 - Sparse representation and dictionary learning

Oktay et al MICCAI'14

Merci!

- ... pour votre attention.
- Commentaires ? Questions ?

Caroline.Petitjean@univ-rouen.fr